

Accurate and Comprehensive Mapping of Multi-omic Data to Biological Pathways

Application Note

Integrated Biology

Abstract

This application note describes the use of Agilent-BridgeDB, an essential technology in Agilent's GeneSpring/Mass Profiler Professional (MPP) product to accurately map biological entities on pathways. It describes four case studies that demonstrate how Agilent-BridgeDB enables significantly more accurate mappings between experimentally identified biological entities (for example, genes, metabolites) and the corresponding entities in pathway databases. Common bioinformatics challenges like missing annotations, resolving enantiomers, and incomplete databases are overcome using the Agilent-BridgeDB technology.

Authors

Anupama Rajan Bhat and Pramila Tata Strand Life Sciences Bangalore, India

Stephen Madden Agilent Technologies, Inc. Santa Clara, California

Introduction

Compound list

Pathway analysis provides a useful biological context for differentially expressed entities resulting from the analysis of high-throughput data in any 'omics' (for example genomics, transcriptomics, proteomics, or metabolomics) experiment. Pathways overrepresented or enriched in the entities of interest can provide mechanistic insights into the underlying biology of the conditions under study. Many popular pathway databases such as KEGG [1], BioCyc [2], and WikiPathways [3] provide detailed and well-annotated pathways. However, comparisons of pathway databases suggest that no single pathway database is comprehensive [4.5.6]. Further, it has been observed that these databases are partly complementary, and thus it is important for researchers to be able to access pathways from multiple sources simultaneously to gain a more complete picture and not miss possible biological interpretations. The Pathway Architect module in GeneSpring and MPP supports the import and analysis of pathways from these popular pathway databases. In addition, Pathway Architect also supports the import of pathways using standard formats such as BioPAX and GPML. A lack of standardization in the names and identifiers of biological entities in pathways across multiple pathway databases results in the same entity being cited with different names or identifiers across databases and at times even across pathways within a single pathway database. In some cases, different entities of the same type (gene/protein/ metabolite) within a pathway can cite identifiers from different databases as well. Furthermore, in the context of a GeneSpring/MPP experiment, the identifiers associated with entities of interest in the experiment may be different from the identifiers available with the pathway entities. This well-recognized identifier mapping problem poses a major challenge in pathway analysis and limits the matches between the entities from the experiment and their counterparts in pathways.

For example, the metabolite D-glucose (Figure 1) might be known alternatively as dextrose, meritose, or (3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol. It has 23 synonyms listed in the Human Metabolite Database (HMDB).

Dethusou detekee

Compound inst	ralliway ualabase
L-Galactose	Acetaldehyde
Theobromine	Ethanol
Paraxanthine	Acetate
Dextrose	Pyruvate
Theopylline	(S)-Lactate
Protionamide	Agilant BridgeDB
Tetrahydrodeoxycorticosterone	Agrient-Bridgebb > Phosphoenolpyruvate
Paraxanthine	Glycerone phosphate
17-Methyl-6Z-octadecenoic acid	D-Glyceraldehyde 3-phosphate
Tridecanoic acid	D-Glucose
8-iso-PGF2alpha	3-Phospho-D-glycerate
Octadecanamide	2-Phospho-D-glycerate
Caldarchaeol	D-Glucose 1-phosphate
	beta-D-Glucose 6-phosphate

Figure 1. Mapping of metabolites using Agilent-BridgeDB.

2

To overcome this limitation, GeneSpring/MPP uses a modified version of the BridgeDB software framework [7] to ensure all possible matches between the experiment and the pathway are reported. Mapper files used by the framework provide the mapping between different entity databases to equate an entity in one dataset (pathway) with the same entity in another dataset (experiment). One way to visualize the mapping is in the form of a table where the rows connect all the synonyms and identifiers for an entity (Table 1).

Table 1. D-Glucose aligned with a synonym and some database identifiers.

Common name	Synonym	KEGG ID	Cas no.	HMDB ID	ChEBI ID
D-Glucose	Dextrose	C00031	50-99-7	001222	4167

There are two types of mapper files currently being used in GeneSpring/MPP-(a) Gene/Protein mapper file and (b) Metabolite mapper file. The Gene/Protein mapper file is organism specific, while the metabolite mapper is common for all organisms. The gene/protein mappers used in GeneSpring/MPP are from the Gladstone Institute and are primarily extracted from Ensembl [8]. The metabolite mapper is developed at Agilent Technologies.

Here we describe four case studies demonstrating the role of Agilent-BridgeDB and the mapper files in enhancing the pathway analysis capabilities of GeneSpring/MPP.

Figure 2. BridgeDB framework in GeneSpring using Agilent metabolite mapper Agilent-BridgeDB and the Gladstone Institute gene/protein mapper to map identifiers across pathways and experiment entities.

Case Study 1: Mapping different annotations in a pathway and an experiment

Figure 3 shows a pathway in a transcriptomics experiment in GeneSpring. Genes in the experiment are annotated with their Entrez Gene IDs. Table 2 shows an example of the properties

available for one of the genes, 'trytophan synthase', in the BioCyc pathway in focus. Genes in this pathway do not cite an Entrez Gene ID, but are annotated with identifiers from other databases. Due to the absence of common identifiers or a bridging mechanism, the pathway does not show any enrichment and the entities do not show any matches with

Figure 3. Tryptophan biosynthesis pathway from BioCyc in a transcriptomics experiment. A) without Agilent-BridgeDB and B) with Agilent-BridgeDB. Yellow background color indicates matches with the experiment.

the experiment (Figure 3A). As a result, the pathway is ignored in the analysis.

When the experiment is re-analyzed using Agilent-BridgeDB and the organism specific mapper files, mappings from pathway identifiers to experiment identifiers are retrieved and a match is identified. In the case of tryptophan synthase, the mapping from UniProt/TrEMBL identifier P0A877 (pathway) to Entrez ID 946204 (experiment) is available and is matched in pathway analysis (Figure 3B).

Table 2. Annotations in BioCyc pathway for entity tryptophan synthase.

Property	Valve	Property	Valve				
Cellular location	Cytosol	PDB	1XCF				
DIP	DIP-35957N	PR	PRO_000024117				
DisProt	DP00252	PRIDE	P0A877				
EcoCyc	TRYPSYN-APROTEIN	PROSITE	PS00167				
EcoliWiki	b1260	Pfam	PF00290				
InterPro	IPR013785	Protein model portal	P0A877				
InterPro	IPR011060	RefSeq	NP_415776				
InterPro	IPR018204	SMR	P0A877				
InterPro	IPR002028	String	511145.b1260				
Label	TrpA	Synonym	Try				
ModBase	P0A877	Synonym	TrpA				
Organism	Escherichia coli K-12 substr. MG1655	Synonym	Alpha subunit				
PDB	1V7Y	Synonym	TSase Alpha				
PDB	1WQ5	Synonym	A protein				
PDB	1XC4	Uniprot/TrEMBL	P0A877				

Case Study 2: Mapping of isomers between pathway and experiment

Figure 4 demonstrates a case in which Agilent-BridgeDB enables mapping of specific enantiomers to their D/L form. In this example, both the metabolomics experiment and the metabolites in the KEGG pathway have KEGG Compound

identifiers. However, while the experiment contains the KEGG identifier for the D/L form of cysteine (C00736), the pathway cites the isomer specific identifiers: L-cysteine (C00097) and D-cysteine (C00793). Agilent-BridgeDB uses the mappings in the Agilent metabolite mapper to ensure the specific forms of the isomer get mapped to the generic form in the experiment.

Figure 4. Specific isomers in a KEGG pathway are matched with the generic form in the experiment through Agilent-BridgeDB.

Case Study 3: Mapping multi-omic experiments to multiple pathway databases

Pathways from multiple sources contain complementary information and together are able to provide a more comprehensive picture of biological processes. The ability to map the same entity with different identifiers through Agilent-BridgeDB enables powerful analysis of pathways simultaneously from multiple sources in GeneSpring/MPP. This becomes useful for cases in which pathways from one source cannot be matched with the experiment due to missing annotations. For example, Figure 5 shows the pentose phosphate pathway from two sources, BioCyc and KEGG, enriched in a multi-omics experiment. Metabolites in both pathways could be matched with the experiment. However, proteins in the BioCyc pathway could not be matched with the transcriptomics experiment due to missing annotations, while proteins in the KEGG pathway could be. Thus in the absence of the metabolite mapper files, enrichment of the pentose phosphate experiment from BioCyc would have been overlooked.

00030 9/3/13 (c) Kanehisa Laboratories

Figure 5. Multi-omics analysis results for the pentose phosphate pathway from BioCyc and KEGG. Matches with the experiment are indicated by the background color of the entity. Yellow indicates gene/protein matches with the transcriptomics experiment. Blue indicates metabolite matches with the metabolomics experiment.

Case Study 4: Mapping experiment entities with missing annotations

In some cases, the experiment may have more than one annotation column. It is possible that an entity with a missing identifier in one annotation has been assigned an identifier from another database. For example, Figure 6 shows a genomics experiment with multiple annotation columns: RefSeq Accession, UniGene ID, Ensembl ID, Entrez Gene ID, and Genbank Accession. Note that not all of the database identifiers are present for all entities. Mapping using any single database identifier will invariably lead to loss of matches due to missing annotations. However, pathway analysis in GeneSpring/MPP considers all available annotations for a specific entity in a predetermined order.

roject Sea	arch View	Tools A	nnotations	Windows	s Help									
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 🔣 - 🗟	÷ 🔊	- 🏶 👅	- 🕹 📓 🖩	- 📈 💦 🔤	€→					
i HeLa ce	ells treated w	ith compo	und X	.0										
ProbeNa.	. US22502 I	US22502	US22502	US22502	US22502	US22502	GeneSymbol	Description	RefSegAccession	UniGeneID	Ensembli	EntrezGeneID	GenbankAccession	1
23_P2	0.7009	-0.9991	-0.7888	0.8207848	0.7009804	0.8164265	ABLIM2	Homo sapiens	NM_032432	Hs.233404		84448	NM_032432	
23_P8	-0.4520	-0.6013	-0.600389	0.45207	0.4802041	0.5466256	<u>IL8</u>	Homo sapiens i	<u>NM_000584</u>	Hs.624	ENST000030	3576	NM_000584	
23_P1	-2.3677	-1.7996	-2.867633	1.8050492	1.7996123	1.8237922	SLC2A5	Homo sapiens	NM_003039	Hs.530003	ENST0000037	6518	NM_003039	_
23_P1	0.329460	.3883431	0.6604688	-0.3294	-0.6795	-0.7405	CISH	Homo sapiens	NM_145071	Hs.655334	ENST000034	1154	NM_145071	
23_P1	-0.7078	-0.7280	-0.4508	0.5188985	0.45083	0.47189	MARCO	Homo sapiens	NM_006770	Hs.67726	ENST0000041	8685	NM_006770	
A 23 P2	-3.1235	-1.85042	-0.9716	1.6691856	0.97163	1.2968302	ACADL	Homo sapiens	NM_001608	Hs.471277	ENST000023	33	NM_001608	_
A 23 P4	1.6100397	1.12714	0.6264396	-0.9218	-0.6264	-0.6659		Guanine nucleo		Hs.170422	ENST000037		BC011853	_
A_23_P5	-0.9788	-0.9736	-1.0253	1.0208406	0.9736481	0.9751568	TP53I3	Homo sapiens t	NM_004881	Hs.50649	ENST000033	9540	NM_004881	_
A_23_P4	-4.646586	-4.1076	-2.2174	2.257741	2.2174563	2.2225356	CGREF1	Homo sapiens	NM_006569	Hs.159525	ENST000040	10669	NM_006569	
A 23 P9	0.3695531	0.93398	1.1471524	-0.8703	-0.3695	-0.8588					li il			
A 23 P2	-0.940809 -	1 112417	-0.9829	1 0067213	0 9440267	0 940809	CFTR	Homo sapiens	NM_000492	Hs.489786	ENST000000	1080	NM_000492	_
A 23 P1	1.5567446	0.66588	1 8348451	-1.3451	-0.6658	-1.3231		Seven transme			ENST000032			
4 23 P3	0 67745	0 35086	0 7990973	-0 3914	-0 3508	-0.8027	NFAT5	Homo sapiens	NM_138714	Hs.371987	ENST000034	10725	NM_138714	_
A 23 P1	-0.5500	-0 5337	-0 6757	0.81065	0 53376	0 57654	NPC1	Homo sapiens		Hs.715623	i i	4864	AF002020	-
A 23 P1	-0.5735	-0.5218	-0.5560	0.5218153	0 59310	0 5338154	C14orf166	Homo saniens	NM 016039	Hs.534457	ENST000026	51637	NM 016039	-
A 23 P5	1 2801356 0	8092866	1 4012079	-1 1046	-0.8092	-0.8487	APLNR	Homo sapiens	NM 005161	Hs.438311		187	NM 005161	-
A 23 P3	1 5731926	0.509017	1 592246	-0.8043	-0.509017	-0.5484	GPR155	Homo sapiens	NM 001033045	Hs.516604	ENST0000039	151556	NM 001033045	-
A 22 PG	-0.9696	-0.9469	-1 0274	1 0279019	1 009572	0.9469766	BIRC3	Homo sapiens	NM 001165	Hs 127799	ENST0000026	330	NM 001165	-
A 23 P3	0.5987215	0 45 1 94	0 37280	-03728	-0.9108	-1 0907	MRPI42P5	Homo sapiens	NR 002208			359821	NR 002208	-
A 22 PO	0.045245	0.967797	0.6700	0.9077974	0.6700007	0 7050078	MYOM1	Homo capions	NM 003803	Hs 464469	ENST0000035	8736	NM 003803	-
A 33 P1	E 045951	2.0401	E 2121	0.0057823	2.0400052	2.0401046	CDH16	Homo sapiens	NM 004062	Hc 513660	ENSTODOOO29	1014	NM 004052	
A 33 PR	0.5280128	0.40625	0.41977	0.4197	0.7077	0.8122	CONTRA	Homo sapiens	11112001002	He 25338			BC063022	
A 22 P1	1 5209120	2 4265	0.41075	1.0012624	-0.7927	1 5805403	CEorf142	Homo sapiens	NM 139560	Hr 501902	ENST0000027	00523	NM 139560	
A_23_F1	-1.5896	-5.4200	-3.2/32	1.9013624	2.2194/81	0.5636492	PHOV	Phone sapiens	<u>HM_130305</u>	Hc 447901	ENST0000027	171177	CP618466	-
A_23_F1	0.495000	0702007	0.32490	-0.5304	-0.4956	-0.5615	704401	Rno-related G	NM 012204	Hz 659222	ENST0000022	20200	NM 012204	
A_23_P0	1 7175	2.2740	0.46133	-0.50492	-0.4253	-0.6896	CVD2A7	Homo sapiens	NM 000765	Hz 111044	ENST0000034	1001	NM_013304	-
A_23_P3	1./1/5	-2.2749	-0.6802	1.3/5/334	0.6802931	1.7156267	CTFJA/	Homo sapiens	NM_000703	Ha 567205	ENSTODOODSS	2709	NM_000703	
A_23_P9	0.43416	0.90010	0.8491/0/	-0.8457	-0.98/1	-0.9567	DTCS1	Homo saplens I	NM 000962	Hc 201072	ENSTODOODSS	5742	NM 000952	-
A_23_P2	1 4000	1.529/921	0.32324	-0.7486	-0.3232	-0.9029	ACD12	Horno sapiens	NM 150000	Ha 657007	ENST0000037	02270	MM_000302	-
A_23_P5	1.4009	-1.4903	-1.8210	1.5435755	1.4009926	1.416//98	ANKROT	Homo sapiens	NM_014201	H: 449590	ENSTODOODSS	27062	NM_132202	_
A_23_P1	2.4011	-0.7877	-2.2424	1.686/228	0.78774	0.8/193	ANKKUI	Homo sapiens	NM_014391	<u>II3.440389</u>	ENST0000037	120552	NM_014391	
A_23_P1	. 2.24140361	1.4054484	1.9108825	-1.9//561	-1.405448	-1.5561	13822	Homo sapiens t	NM_173405	<u>ms.475117</u>	ENST0000032	120000	NM_1/3403	
A_23_P2	0.600723	0.52919	0.4432366	-0.4432	-0.5551	-0./324	KUNHS	Homo sapiens	NM_139318	Hs.27043	ENST0000032	2/135	NM_139318	_
A_23_P1	-0.5694	-0.5433	-0.5607	0.54336	0.5995059	0.5728679	HPL CLO CCC	Homo sapiens	NM_002705	<u>ms.192233</u>	ENS1000034	3495	NM_002705	_
A_23_P3	. 0.47787	0.43570	0.70827	-0.4357	-0.7624	-0.8720	<u>C120rf66</u>	Homo sapiens	<u>NM_152440</u>	HS.505871	ENST0000039	144577	<u>NM_152440</u>	_
A 33 DC	0.52538	0.48849	0.9032159	-0.7596	-0.4884	-0.6620	THBS2	Human thromb		Hs.3/1147		/058	<u>L12350</u>	

Figure 6. Multiple complementary annotation columns in a GeneSpring experiment.

This ensures that entities with sparse annotations are also mapped. In Figure 7 the experiment has the Entrez Gene ID annotation column, but an identifier is not available specifically for the putative 'tubulin' gene. Therefore, Agilent-BridgeDB attempts to match a pathway entity with other available identifiers for this gene. In this case it retrieves a mapping to the UniGene ID and the pathway entity in WikiPathways is matched with the experiment.

Figure 7. Pathway entity with Entrez Gene ID is matched to its counterpart in the experiment through its UniGene ID by Agilent-BridgeDB, since the Entrez ID is not available in the experiment.

Conclusions

Specific examples have been presented across different pathway databases (KEGG, BioCyc, and WikiPathways) and 'omics techniques (genomics, transcriptomics, and metabolomics) available in GeneSpring/MPP. Each of them demonstrated that researchers can get more accurate and comprehensive mappings of their experimental data to pathway databases due to the Agilent-BridgeDB technology. Biological entities that are missing specific annotations in either the experiment or pathway can still be mapped, resulting in more useful information. Multi-omics experiments are more likely to indicate pathways enriched in multiple 'omic technologies since GeneSpring/MPP has mappers for genes, proteins, and metabolites. Successful mapping helps drive research forward by highlighting important pathways and making planning for the next experiment significantly more effective.

References

- 1. Kanehisa, et al. Nucleic Acids Research, 42:D199 (2014).
- 2. Caspi, et al. Nucleic Acids Research, 38:D473 (2010).
- 3. Kelder, et al. Nucleic Acids Research, 40:D1301 (2012).
- 4. Stobbe, et al. BMC Systems Biology, 5:165 (2011).
- 5. Soh, et al. BMC Bioinformatics, **11**:449 (2010).
- 6. Altman, et al. BMC Bioinformatics, 14:112 (2013).
- 7. van lersel, *et al. BMC Bioinformatics*, **11**(1):5 (Jan 4, 2010).
- 8. Flicek, et al. Nucleic Acids Research, 42:D749 (2014).

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

For Research Use Only. Not for use in diagnostic procedures.

PR7000-0382

© Agilent Technologies, Inc., 2014, 2015, 2016 Printed in the USA February 10, 2016 5991-5192EN

