

Author

A.G.Huesgen Agilent Technologies, Inc. Waldbronn, Germany Using the Agilent 1290 Infinity Series LC Method Development System and Agilent MassHunter Walkup Software for Multiple-Method Analysis of Environmental Samples

Application Note

Environmental

Abstract

The Agilent 1290 Infinity Series LC Method Development Solution in combination with the Agilent MassHunter Walkup Software provides easy and convenient access to an LC system for different users with different applications. For the analysis of the submitted samples, predefined methods including appropriate column, mobile phases, and chromatographic methods are available. If needed, the information about the results are send remotely by, for example, e-mail after completion of the run. The super-users take care of the LC and/or LC/MS system, providing the chromatographic methods, keeping the LC and LC/MS system running, and, in case of errors, taking appropriate action.

Walkup Queue	Walkup System			DwerRation		Industry		Irjector	
Running	20.63 mins left in	nun	Det	a acquisition		Running		Inj. Door	
								Queue Runtin	e
							2	hrs 58 m	nins
eler		PHIL	a -		kme			Current	Fun Numbe
P2+54VaPlate*	Citeria de la composición de l		Plate	Placement	Sample Name	Method	Data File	User Name	Target
			n n n	A-03 A-03 A-02	Mas aldehydes aldehydes nitroarsmatics	Philes Aldehydes M Aldehydes M	PUNPARSOND ALDEHIDESANS. ALDEHIDESANS. NETROAROMAT.	Supan	
		:0		A-02	ntroaromatica		NETROAROMAT.		
r 0000000	<u></u>								

Introduction

Frequently, several different applications have to be run on the same system in a laboratory using different columns. different mobile phases, different column temperatures, and different chromatographic parameters. Changing the column or changing mobile phases is time consuming, and the risk of bad column connections increases with the number of installations. Change of the mobile phase is often required due to different pH requirements or the need for a different organic mobile phase. The Agilent 1290 Infinity Series LC Method Development Solution¹ in combination with the Agilent MassHunter Walkup^{2,3} offers a convenient solution.

Column and mobile phases are included in the chromatographic method by the appropriate valve position and other parameters such as flow rate, gradient percentage, and so forth. The super-user defines the chromatographic methods for all needed applications and the user selects the appropriate method for his samples. After submitting his samples, the analyst starts using the correct column and mobile phases. The results are stored and sent to the user by, for example, email.

The super-user establishes the definition of user profiles, pass words, and other system relevant parameters. The single user or a user group can have different access levels, reflecting their chromatographic expertise.

In the following, we show different tasks of an environmental laboratory, analysis of nitro aromatics, analysis of aldehydes, and analysis poly-nuclear aromatics (PNAs). Different users submitted their samples selecting different chromatographic methods.

Experimental

Table 1. Instrumentation used.

Module	Product number
Quaternary pump	G4204A
Auto sampler	G4226A
ALS cooler	G1330B
Column compartment 1 equipped with high pressure column switching valve + valve drive option # 58	G1316C
Column compartment 2 equipped with low pressure column switching valve + valve drive option # 58	G1316C
Solvent selection valve for the aqueous phases	G1160A
Solvent selection valve for the organic phases	G1170A
Diode array detector, with 10-mm path length cell	G4212A
Method development valve kit (1,200 bar)	G4230B
Low dispersion capillary kit	5067-4646

Chromatographic conditions for nitroaromatics

Sample	Dr. Ehrenstorfer Nitroaromatic-Explosive Mix no. 3 (p/n 08330300), 10 ng/µL each,
Column	Agilent Poroshell 120 C18, 4.6 × 150 mm, 2.7 µm (p/n 683975-902)
Mobile phase	A = Water, B = Methanol
Gradient	0 minutes 20 % B, at 10 minutes 30 % B, at 30 minutes 95 % B, at 31 minutes 95 % B
Flow rate	0.8 mL/min
Stop time	40 minutes
Post time	5 minutes
Injection volume	3 µL of undiluted sample was injected
Column temperature	35 °C
DAD	254/214, 235/10 nm Ref 400/80 nm Flow cell: 10 mm Peak width: < 0.013 minutes (20 Hz)

Chromatographic conditions for aldehydes

Sample	Sigma-Aldrich (Catalog No. 47651-U) diluted in acetonitrile. In the mixture, each analyte had a concentration of 30 $\mu g/mL$.
Column	Agilent ZORBAX RRHD Eclipse Plus C18, 2.1 × 150 mm, 1.8 μm (p/n 959759-902)
Mobile Phase	A: Water, B: Acetone
Flow rate	0.25 mL/min
Gradient	at 0 minutes 45 %,
	at 12 minutes 53 % B,
	at 28 minutes 67 % B,
	at 32 minutes 67 % B,
	at 33 minutes 95 % B
Stop time	34 minutes
Post time	20 minutes
Injection volume	2.1 μL
Temperature	45 °C
Detection	360 nm/10 nm
	Ref: off
	Peak width > 0.025 minutes (0.5 second response time, 10 Hz)

Chromatographic conditions for PNAs

Sample	SS EPA 610 PAH Mix in Methanol/Methylene Chloride (1:1), (Supelco Analytical)
Column	Agilent ZORBAX Eclipse PAH, 4.6 × 150 mm, 5 μm (p/n 959993-918)
Solvents	A: Water, B: Acetonitrile
Gradient	at 0 minutes 40 % B, at 20 minutes 95 % B
Flow rate	1.5 mL/min
Stop time	30 minutes
Post time	5 minutes
Injection volume	3 μL
DAD	230 nm, reference 400 nm

PNAs

Napthalene

Acenaphtylene

Acenaphtene

Phenanntrene

Anthracene

Fluoranthene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fuoranthene

Benzo(g,h,i)perylene

16. Indeno(1,2,3-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(a)pyrene

Fluorene

Pyrene

Chrysene

1.

2.

3.

4.

5.

6.

7.

8.

9

10.

11.

12.

13.

14.

15.

Analyzed compounds

Nitroaromatics

- 1. Nitroguanidin
- 2. Octogen (HNX)
- Hexogen (RDX)
 1.3.5 Trinitroben
- 4. 1,3,5 Trinitrobenzene
- 5. 2-Amino-6-Nitrotoluene
- 1,2-Dinitrobenzene
 1,3-Dinitrobenzene
- 1,3-Dinitrobenzene
 2-Amino-4-Nitrotoluene
- 2-Amino-4-Nitrotolu
 Nitrobenzene
- 10. Tetyl
- 10. ICLYI
- 2,4,6-dinitrotoluene
 4-Amino-2,6-dinitrotoluene
- 13. 2,6-Dinitrotoluene
- 14. 2-Nitrotoluene
- 15. 4-Nitrotoluene
- 16. 3-Nitrotoluene
- 17. Nitropenta

Aldehydes

- 1. Formaldehyde-2,4-dinitrophenylhydrazone
- 2. Acetaldehyde-2,4-dinitrophenylhydrazone
- 3. Acrolein-2,4-dinitrophenylhydrazone
- 4. Acerone-2,4-dinitrophenylhydrazone
- 5. Propionaldehyde-2,4-dinitrophenylhydrazone
- 6. Crotonaldehyde-2,4-dinitrophenylhydrazone
- 7. Methacrolein-2,4-dinitrophenylhydrazone
- 8. 2-Butanone-2,4-dinitrophenylhydrazone
- 9. Butyraldehyde-2,4-dinitrophenylhydrazone
- 10. Benzaldehyde-2,4-dinitrophenylhydrazone
- 11. Valeraldehyde-2,4-dinitrophenylhydrazone
- 12. m-Tolualdehyde-2,4-dinitrophenylhydrazone
- 13. Hexaldehyde-2,4-dinitrophenylhydrazone

3

Acquisition and Evaluation Software

OpenLAB CDS ChemStation version C.01.05 and MassHunter Walkup software C.01.00

Results and Discussion

The 1290 Infinity LC Series Method Development Solution can be used with up to eight columns of different length and internal diameter. Having installed two solvent selection valves and a 1290 Infinity Quaternary Pump, 28 different solvents are available. In our example, we used three different columns and four different mobile phases for the analysis of nitro-aromatics⁴, aldehydes⁵, and PNAs⁶. The super-user had set up three different methods for the three applications, see Figure 1. This is done in the administration screen, which is typically accessible only by the super-user.

Having defined the appropriate method in the administration tool, the methods are accessible for submitting samples. Typically, three steps are needed to submit samples, see Figures 2, 3, and 4. Figure 2 shows the first step. The user has to fill in name, password, vial type, and number of samples.

Figure 1. Method definition by the super user in the walk up administration screen.

User Login

Page 1 of 3

User Name	angelika	-
Password:	***	
Vial Type:	2mL Vials	•
Number Of Samples:	3	

Figure 2. Start screen for submitting samples.

Figure 3 shows what additional sample and method information has to be filled in.

In the third step, the sample vial has to be put into the indicated auto sampler position, see Figure 4.

When step 3 is completed, the sample submission is finished and the analysis starts. Typically, the super-user has set up a pre-run method and equilibration methods. An individual equilibration and post cleaning method has to be set up for each method with different column and mobile phase combinations. A blank run before the analysis of standards and real life samples is required, otherwise, the column is not sufficiently conditioned.

In our example, three samples were provided by one user, see Figure 5.

Page 2 of 3

Automatically copy down columns

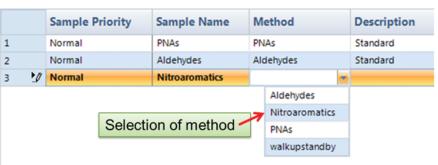


Figure 3. Submitting samples for the analysis of nitroaromatics using the appropriate method.

Page 3 of 3

NoUnit	~10 Max**		Placement	Sample Priority	Sample Name	Method	Description
		1 1	1	Normal	PNAs	PNAs	Standard
		2	2	Normal	Aldehydes	Aldehydes	Standard
		3	3	Normal	Nitroaromatics	Nitroaromatics	Standard
		Plea	ise put your via	al(s) in tray position	(s) as indicated.		

Figure 4. Final step during sample submission.

Walkup Queue	Walkup System			ChemStation		Instrument		Injector	
Running	34.78 mins left in	run	Dat	a acquisition		Running		Inj. Done	
								Queue Runtim	ne
							1	hr 45 m	nins
Neser		PNAM			angelika			Current	Run Number: 3
P2*54Va B C C E E		1	Plate P1 P1 P1	Placement A-01 A-02 A-03	Sample Name PNAs Aldehydes Nitroaromatics	Method PNAs Aldehydes Nitroaromatics	Data File PNAPNAs0039.D ALDEHYDESAId NITROAROMAT		Target 1
F 1 2 3 4 5 P++540 B C C C C C C C C C C C C C		G		unning sa waiting f s			ist of su amples		d

Figure 5. One user provides samples for analysis.

The data were stored in different folders according to the user group, see Figure 6. Typically, the users get informed about the results remotely through email or other tools, and can then evaluate the data in detail. Figure 6 shows the chromatograms of the nitroaromatics analysis.

The software sends an area percent report to the user if not otherwise defined. Figure 7 gives an example. If calibrated reports are needed, a calibration run has to be performed by the super-user and stored with the appropriate walk-up method.

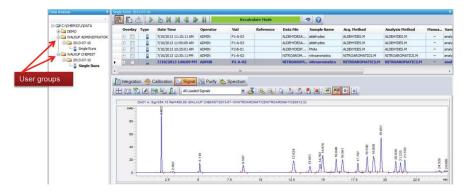


Figure 6. Data storage of nitroaromatics analysis accordingly to the user group.

Acq. Operator : ADMIN
Sample Operator : angelika
Acq. Instrument : Weser Location : P1-A-04
Injection Date : 7/10/2013 14:06:04
Inj Volume : 3.000 μL
Acq. Method : C:\CHEM32\1\METHODS\PNA.M

Area	Area Percent Report									
Sorte	d By : Signal									
Calib.	Data Modifie	d : Mond	av, July 0	1. 201314:18	55					
Multip	lier : 1.0000			,						
Dilutio	on : 1.0000									
Do no	t use Multiplie	r & Dilut	ion Factor	with ISTDs						
	1 1: DAD1 A.									
Peak	RetTime	Type	Width	Area	Area	Name				
#	[min]	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[min]	[mAU*s]	%					
1 '	3.445	VB	0.4236	22.90172	1.1204	?				
2	7.349	VB	0.0868	68.71390	3.3616	?				
3	8.200	BB	0.0961	255.53972	12.5013	?				
4	9.543	VV	0.1028	291.95688	14.2829	?				
5	9 825	VB	0 1119	26 40264	1 2917	2				

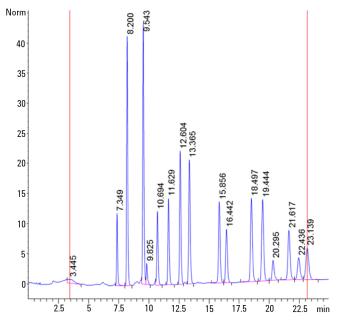


Figure 7. Area % report of the analysis of PNAs.

Figure 8 shows an overlay of all created chromatograms. These applications are high-resolution methods using UV detection. It is also possible to add a mass spectrometer for highly selective analysis or to set up fast screening methods for high sample throughput. The analysis of the nitroaromatics required two wavelengths to be able to detect Compound 17.

Conclusions

The combination of the Agilent 1290 Infinity Series LC Method Development Solution and the Agilent MassHunter Walkup Software enables users or user groups to access an UHPLC system for multimethod applications. All method parameters such as columns, mobile phases, gradients, and all further chromatographic conditions are combined in one method and are available without the need to change hardware, for example, columns. Up to eight columns and up to 28 mobile phases are possible with the system setup described in this Application Note. The super-user creates all needed methods, which are then accessible by the users. Submitting samples is done in three steps and includes selecting the appropriate method and putting the sample(s) into the indicated vial position. The reports can be obtained remotely for example, through email.

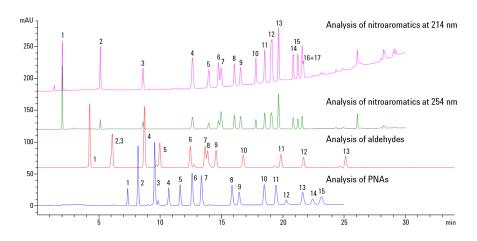


Figure 8. Overlay of created chromatograms of PNAs, aldehydes, and nitroaromatics.

References

- 1. A.G. Huesgen, "Agilent 1290Infinity Multi-method solution", Agilent application note, Publication number 5990-5600EN, May **2010**.
- "Agilent MassHunter Walkup System, Quick Start Guide", Agilent publication, Publication number G2725-90016, July **2013**.
- "Agilent MassHunter Walkup System, Setup Guide", Agilent publication, Publication number G2725-90017, July 2013.
- A.G. Huesgen, "Seamless instrument-to-instrument method transfer of the EPA method 8330A/B for nitro aromatics from an Agilent 1200 Series LC to the Agilent 1290 Infinity Binary LC using ISET", Agilent Application note, Publication number 5991-1194EN.
- S. Schneider, "Analysis of DNPH-derivatized Aldehydes and Ketones using the Agilent 1220 Infinity LC System with Diode Array Detector, Agilent Application note, Publication number 5991-1545EN, January 2013.
- S. Volk, A. Gratzfeld-Huesgen, "Analysis of PAHs in soil according to EPA 8310 method with UV and fluorescence detection", Agilent Application note, Publication number 5990-8414EN, September 2011.

www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc., 2013 Published in the USA, September 1, 2013 5991-2581EN

Agilent Technologies