

Detection, Monitoring, and Quantitation of Trace Sulfonamides in Pork Muscle Using the Agilent 6410A LC/MS/MS

Application Brief

Jian-giu Mi

Sulfonamides are the one of the oldest groups of veterinary medicines in use today. All sulfonamide drugs are currently included in Annex 1 of the Council Regulation 2377/90. The existing EU maximum residue level (MRL) for all drugs of the sulfonamide group is 100 μ g/kg in all food-producing species.

A variety of methods have been used to measure sulfonamide residue in biological materials, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance capillary electrophoresis (HPCE), gas chromatography (GC), and enzyme-linked immunosorbent assay (ELISA). Now, the LC/MS/MS method is used more widely.

In this study, a multiresidue analysis was performed to simultaneously determine sulfonamides in pork by the Agilent 6410A LC/MS/MS. This multiresidue analysis for sulfonamides can detect different kinds of sulfonamides within one run. Compared with the classic methods, this method can achieve greater sensitivity and be used for screening, confirmation, and quantification.

Experimental

Sample Preparation

- 1. Weigh 3-g samples of pork muscle were weighed directly into 50-mL polypropylene centrifuge tubes.
- 2. Homogenize – The samples were homogenized for 3 minutes with 10 mL acidified methanol.
- 3. Centrifuge The samples were then centrifuged for 10 minutes.
- 3. Extract - 10 mL acidified methanol was extracted, filtered, and injected

Highlights

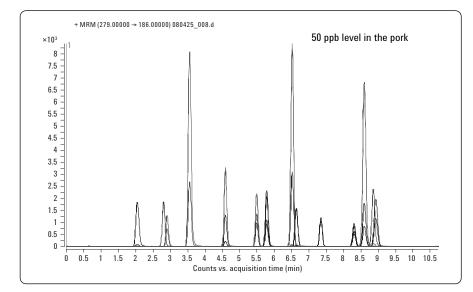
- The pH of the mobile phase played an important role in the LC separation because the retention behaviors of the drugs were dependent on the ionization of the sulfonamides.
- Different kinds of sulfonamide drugs can be analyzed within one run.
- Using the RRLC can get all 14 compounds to elute within 10 minutes.
- High sensitivity easily meets the EU requirements.

Instrument Settings

LC Conditions

LC	Agilent 1200 Series LC
Column	Agilent ZORBAX SB-C18 (2.1 $ imes$ 50 mm, 1.8 μ m)
Mobile phase	A: 0.1% TFA, B: Acetonitrile
	0 min: 5% B
	6 min: 23% B
	9 min: 23% B
	9.01 min: 90% B
Stop time	10 min
Column temperature	30 °C
Injection volume	1 μL
Flow rate	0.3 mL/min

MSD Conditions


Ionization	ESI (positive)
Scan range	<i>m/z</i> 100 to 450
Drying gas	7 L/min at 350 °C
Nebulizer gas	30 psi

MRM setting

Compound	MRM	Frag	CE (V)
Sulfachloropyridazine (SCP)	285–156 285–108	100	15 20
Sulfadiazine (SD)	251–156 251–185	120	10 10
Sulfamethazine (SDM)	311–156 311–218	140	15 15
Sulfamethoxypyridazine (SMP)	281–156 281–215	120	10 15
Sulfamerazine (SM1)	265–156 265–172	120	15 15
Sulfamethazin (SM2)	279–156 279–204	140	15 15
Sulfalmethoxazole (SMZ)	254–156 254–147	120	15 20
Sulfamonomethoxine (SMM)	281–156 281–126	120	10 20
Sulfathiazole (ST)	256–156 256–107	120	15 15
Sulfaquinoxaline (SQX)	301–156 301–208	140	15 15
Sulfadoxine (SDM)	311–156 311–108	140	15 20
Sulfaphenazole (SPP)	315–156 315–160	140	20 20
Sulfaclozine	285–156 285–131	100	15 20
Sulfafurazole (SIZ)	268–156 268–113	120	5 10

Results

Good separation and response

Jian-qiu Mi is an application chemist based at Agilent Technologies, Beijing, China.

For More Information

For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

 $\textcircled{\mbox{$\odot$}}$ Agilent Technologies, Inc., 2009 Printed in the USA June 15, 2009 5990-3761EN

Agilent Technologies