

Analysis of hallucinogenic mushrooms by CE-ESI-MS

Application Note

Drug Testing

Abstract

Extracts from hallucinogenic mushrooms were analyzed by capillary electrophoresis coupled with electrospray ionization mass spectrometry (CE-ESI-MS). The data shown here demonstrate feasibility. Additional method development and/or validation may be required for routine use.

Experimental

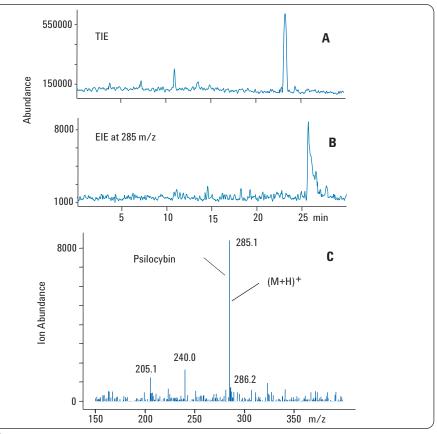
CE-ESI-MS analysis was performed using the Agilent Capillary Electrophoresis system with CE-MS capillary cassette coupled to the Agilent MSD which was equipped with electrospray source and orthogonal sprayer for CE-MS. Sheath liquid was delivered by an Agilent binary pump equipped with a 1:100 flow splitter. The Agilent ChemStation software was used for instrument control.

The fused silica capillary was prepared by flushing for 30 minutes with 1 N NaOH followed by a 10 minute wash with de-ionized water prior to insertion into the sprayer needle. Once installed, the capillary was flushed with running buffer for 30 minutes.

The sample was provided by a law enforcement agency specifically for this study. The hallucinogenic mushroom sample was prepared by methanolic extraction with no further dilution.

Agilent Technologies

Authors


Dat T. Phan Peter B. Harrsch Agilent Technologies, Waldbronn, Germany

Results

Psilocybin is the major of two psychoactive compounds found in hallucinogenic mushrooms, the other component being psilocin. Analysis of a methanolic extract of hallucinogenic mushrooms produced a total ion electropherogram (TIE) with two peaks (figure 1A). The spectra from both peaks were examined and did not appear to contain the expected molecular ion of 285 m/z characteristic for psilocybin. However, an extracted ion electropherogram (EIE) at 285 m/z gives a single peak at 26 minutes (figure 1B). Evaluation of the spectrum (figure 1C) from this peak clearly shows that the major ion has a mass of 285 and is most likely the protonated molecular ion of psilocybin. An ion at 205 m/z is also present which would be consistent with a fragment ion resulting from the loss of a phosphate from the psilocybin yielding the dephospho-analog psilocin. The data shown here demonstrate that CE-ESI-MS can be used to identify these drugs of abuse. Confirmation of psilocybin was accomplished by the presence of molecular ions specific for the drug substance.

Equipment

- Agilent Capillary Electrophoresis
 system
- Agilent CE-MS Adapter Kit
- Agilent LC/MSD module with API Electrospray Source
- Agilent CE-ESI-MS Sprayer Kit
- Agilent ChemStation and CE-MS software

Figure 1

Analysis of a methanolic extract from hallucinogenic mushrooms.

Chromatographic conditions

Sample:	methanolic extract from hallucinogenic mushrooms
Injection:	3 sec @ 50 mbar
Capillary:	bare fused silica, total length 100 cm, 50 μm id
Buffer:	50 mM ammonimum acetate, pH 4.5
Voltage:	25 kV:
Temperature:	25°C
Preconditioning:	3 min flush with buffer at 1 bar
Sheath liquid:	0.5 % acetic acid in 50 % acetonitrile, 5 µL/min
Nebulizing gas:	nitrogen, 20 psi
Drying gas:	nitrogen, 7 L/min, 200 °C
Acquisition:	positive mode, Vcap -3.5 kV, fragmentor, 100 V, step size 0.1, PW 0.25 min, time
	filter on
Scan range:	80–500 m/z

www.agilent.com/chem/ce

© Agilent Technologies Inc., 2000-2009

Published March 1, 2009 Publication Number 5990-3393EN

Agilent Technologies