# Waters

# CHLORAMPHENICOL CRISIS IN BENELUX: LC-MS/MS OFFERS THE ANALYTICAL SOLUTION !

Peter Batjoens<sup>1</sup>, Yasmine Govaert<sup>1</sup>, Amaya Jànosi<sup>1</sup>, Jean-Marie Degroodt<sup>1</sup>, \*Nico Van Eeckhout<sup>2</sup>, Bart de Craene<sup>2</sup>, Karine Clauwaert<sup>2</sup> and Jan Claereboudt<sup>2</sup> <sup>1</sup>IPH-LP, Juliette Wytsmansstraat 14, B-1050 Brussels, Belgium. <sup>2</sup>Micromass BV, Bedrijvencentrum Vilvoorde, Mechelsesteenweg 277 Box 9, B-1800 Vilvoorde, Belgium

### Presented at Spring Meeting Dutch Society of Mass Spectrometry, Wageningen, Netherlands, 13th-17th May, 2002

### Introduction

The application of veterinary drugs in aquaculture can lead to residue problems, which require the development of suitable and fast analytical methods. This particular problem was demonstrated in 2001 in the Netherlands and Belgium where shrimps contaminated with chloramphenicol were imported from the Far East and became part of a larger consignment of animal feed delivered to firms in Germany, Austria, Denmark, Poland and Romania.

In order to allow a faster control of these seafood samples, we have developed in this study a rapid and sensitive LC-MS/MS method for the identification and quantitation of chloramphenicol in shrimps using liquid chromatography coupled to a new compact triple quadrupole MS/MS system.

### **Experimental Conditions**

### Sample preparation

The extraction of chloramphenicol from seafood products was performed according to a previously described extraction procedure (J.M.Degroodt, B. Wyhowski de Bukanski, J. De Groof, H. Beernaert and S. Srebrnik, J. Liquid Chrom., 15, 13, 2355-2371, 1992). Briefly, 10 gr of shrimp tissue (to which the internal standard, chloramphenicol-d<sub>5</sub>, was added at a concentration of 1 ppb) was vortexed with 12 ml of ethyl acetate and centrifuged. The organic phase was evaporated to dryness and redissolved in petroleum ether: ammonium acetate (7:1, v/v). The mixture was vortexed and centrifuged again. Three ml of pentane was added to the aqueous phase. After vortex and centrifugation, 2 ml of ethyl acetate was added to the aqueous phase. The ethyl acetate phase was evaporated to dryness and dissolved in mobile phase.

## LC conditions

| HPLC system:      | Waters Alliance 2695               |
|-------------------|------------------------------------|
| Column:           | Alltech ALTIMA C18 (3.2 x 150      |
|                   | mm, 5 µm)                          |
| Mobile phase:     | water:methanol (45:55, v/v)        |
| Flow rate:        | 400 µL/min                         |
| Injection volume: | 10 µL                              |
| AutoDivert Valve: | The Rheodyne valve on the front    |
|                   | panel of the mass spectrometer     |
|                   | was programmed to divert the       |
|                   | HPLC effluent during the first 2   |
|                   | minutes and the last minute of the |
|                   | run to the waste.                  |
|                   |                                    |

### **MS** conditions

Mass spectrometer:Micromass Quattro Micro (Figure 1) Ionisation mode: ES negative ion Capillary voltage:3.5 kV MS/MS: Argon at 3.3 x 10<sup>-3</sup> mbar as collision gas



Figure 1.



# Waters

### **Results and Discussion**

Chloramphenicol- $d_5$  was used as internal standard for quantification purposes. **Table 1** summarises the multiple reaction monitoring (MRM) transitions and conditions used in the analysis of chloramphenicol and its deuterated analogue.

| Compound | Precursor ion<br>(m/z) | Product ion<br>(m/z) | Cone voltage (V) | Collision Energy<br>(eV) |
|----------|------------------------|----------------------|------------------|--------------------------|
| CAP      | 320.60                 | 152.20               | 28               | 18                       |
|          |                        | 256.90               | 28               | 11                       |
|          |                        | 194.15               | 28               | 13                       |
| CAP-D5   | 325.65                 | 157.25               | 28               | 18                       |

Table 1. Precursor and product ions of chloramphenicol obtained under optimal ESI (-) MS/MS conditions

**Figure 2** shows the LC-MS-MS chromatograms obtained for the analysis of shrimp sample fortified at 0.1 ppb with chloramphenicol. The internal standard was in a concentration of 1 ppb.





Based on the response for the smallest ion at the 0.1 ppb level, an estimated LOD of about 0.05 ppb could be realistic.

For the evaluation of the linearity, blank shrimp extracts were fortified with known concentrations (0 - 0.1 - 0.5 - 1 - 5 and 10 ppb) of chloramphenicol. The internal standard was added to each sample in a concentration of 1 ppb. Each concentration level was injected three times. The calibration curve was generated by means of QuanLynx software. The typical linearity of response is demonstrated in **Figure 3**.





Both fortified shrimp samples at 0.1 and 0.5 ppb were injected five times. The accuracy of the method was evaluated by comparing the mean of the measured concentrations with the theoretical concentration added to the samples. The results are presented in **Table 2**.

| Injection | Conc added<br>(ppb) | Conc Found<br>(ppb) | Injection | Conc added<br>(ppb) | Conc Found<br>(ppb) |
|-----------|---------------------|---------------------|-----------|---------------------|---------------------|
|           |                     |                     |           |                     |                     |
| 1         | 0.1                 | 0.098               | 1         | 0.5                 | 0.471               |
| 2         | 0.1                 | 0.091               | 2         | 0.5                 | 0.474               |
| 3         | 0.1                 | 0.095               | 3         | 0.5                 | 0.475               |
| 4         | 0.1                 | 0.091               | 4         | 0.5                 | 0.502               |
| 5         | 0.1                 | 0.092               | 5         | 0.5                 | 0.490               |
|           | Avg                 | 0.093               |           | Avg                 | 0.482               |
|           | St Dev              | 0.003               |           | St Dev              | 0.013               |
|           | % RSD               | 3.265               |           | % RSD               | 2.737               |
|           | % Accuracy          | -7                  |           | % Accuracy          | -4                  |

Table 2. Accuracy of the developed LC-MS/MS method for the determination of chloramphenicol in shrimps

# Waters

The precision of the injection was also evaluated by calculating the relative standard deviation (%RSD) of the ratio (area chloramphenicol / area internal standard) for all the three transitions. The results are presented in **Table 3**.

|                                    | 040.05                                                        | 1                                            | 040                                                         |                                                                         | 1                                                                             |                                                                                                         |                                                                               |
|------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                    | CAP - D5                                                      |                                              | CAP                                                         |                                                                         |                                                                               | CAP/CAP-D5                                                                                              |                                                                               |
| Injection                          | 326 > 157                                                     | 321 > 257                                    | 321 > 194                                                   | 321 > 152                                                               | 321 > 257                                                                     | 321 > 194                                                                                               | 321 > 152                                                                     |
|                                    |                                                               |                                              |                                                             |                                                                         |                                                                               |                                                                                                         |                                                                               |
| 1                                  | 3021                                                          | 795                                          | 373                                                         | 1462                                                                    | 0.2632                                                                        | 0.1235                                                                                                  | 0.4839                                                                        |
| 2                                  | 2886                                                          | 791                                          | 333                                                         | 1395                                                                    | 0.2741                                                                        | 0.1154                                                                                                  | 0.4834                                                                        |
| 3                                  | 2802                                                          | 822                                          | 342                                                         | 1422                                                                    | 0.2934                                                                        | 0.1221                                                                                                  | 0.5075                                                                        |
| 4                                  | 2776                                                          | 769                                          | 315                                                         | 1380                                                                    | 0.2770                                                                        | 0.1135                                                                                                  | 0.4971                                                                        |
| 5                                  | 2587                                                          | 773                                          | 317                                                         | 1305                                                                    | 0.2988                                                                        | 0.1225                                                                                                  | 0.5044                                                                        |
|                                    | i.                                                            |                                              |                                                             | AVG                                                                     | 0.281                                                                         | 0.119                                                                                                   | 0.495                                                                         |
|                                    |                                                               |                                              |                                                             | SD                                                                      | 0.015                                                                         | 0.005                                                                                                   | 0.011                                                                         |
|                                    |                                                               |                                              |                                                             | % RSD                                                                   | 5.187                                                                         | 3.854                                                                                                   | 2.273                                                                         |
|                                    |                                                               |                                              |                                                             |                                                                         |                                                                               |                                                                                                         |                                                                               |
|                                    |                                                               |                                              | 0.1 ppb s                                                   | pike level                                                              |                                                                               |                                                                                                         |                                                                               |
|                                    | CAP - D5                                                      | I                                            | 0.1 ppb s<br>CAP                                            | pike level                                                              | I                                                                             | CAP / CAP-D5                                                                                            |                                                                               |
| Injection                          | CAP - D5<br>326 > 157                                         | 321 > 257                                    | 0.1 ppb s<br>CAP<br>321 > 194                               | pike level<br>321 > 152                                                 | 321 > 257                                                                     | CAP / CAP-D5<br>321 > 194                                                                               | 321 > 152                                                                     |
| Injection                          | CAP - D5<br>326 > 157                                         | 321 > 257                                    | 0.1 ppb s<br>CAP<br>321 > 194                               | pike level<br>321 > 152                                                 | 321 > 257                                                                     | CAP / CAP-D5<br>321 > 194                                                                               | 321 > 152                                                                     |
| Injection                          | CAP - D5<br>326 > 157<br>2977                                 | 321 > 257<br>214                             | 0.1 ppb s<br>CAP<br>321 > 194<br>71                         | pike level<br>321 > 152<br>327                                          | 321 > 257<br>0.0719                                                           | CAP / CAP-D5<br>321 > 194<br>0.0238                                                                     | 321 > 152<br>0.1098                                                           |
| Injection<br>1<br>2                | CAP - D5<br>326 > 157<br>2977<br>2859                         | 321 > 257<br>214<br>172                      | 0.1 pph s<br>CAP<br>321 > 194<br>71<br>81                   | <u>321 &gt; 152</u><br>327<br>313                                       | 321 > 257<br>0.0719<br>0.0602                                                 | CAP / CAP-D5<br>321 > 194<br>0.0238<br>0.0283                                                           | 321 > 152<br>0.1098<br>0.1095                                                 |
| Injection<br>1<br>2<br>3           | CAP - D5<br>326 > 157<br>2977<br>2859<br>2786                 | 321 > 257<br>214<br>172<br>197               | 0.1 ppb.s<br>CAP<br>321 > 194<br>71<br>81<br>69             | pike level<br>321 > 152<br>327<br>313<br>325                            | 321 > 257<br>0.0719<br>0.0602<br>0.0707                                       | CAP / CAP-D5<br>321 > 194<br>0.0238<br>0.0283<br>0.0248                                                 | 321 > 152<br>0.1098<br>0.1095<br>0.1167                                       |
| Injection<br>1<br>2<br>3<br>4      | CAP - D5<br>326 > 157<br>2977<br>2859<br>2786<br>2811         | 321 > 257<br>214<br>172<br>197<br>162        | 0.1 ppb s<br>CAP<br>321 > 194<br>71<br>81<br>69<br>67       | pike level<br>321 > 152<br>327<br>313<br>325<br>301                     | 321 > 257<br>0.0719<br>0.0602<br>0.0707<br>0.0576                             | CAP / CAP-D5<br>321 > 194<br>0.0238<br>0.0283<br>0.0248<br>0.0238                                       | 321 > 152<br>0.1098<br>0.1095<br>0.1167<br>0.1071                             |
| Injection<br>1<br>2<br>3<br>4<br>5 | CAP - D5<br>326 > 157<br>2977<br>2859<br>2786<br>2811<br>2802 | 321 > 257<br>214<br>172<br>197<br>162<br>176 | 0.1 pph s<br>CAP<br>321 > 194<br>71<br>81<br>69<br>67<br>76 | pike level<br>321 > 152<br>327<br>313<br>325<br>301<br>308              | 321 > 257<br>0.0719<br>0.0602<br>0.0707<br>0.0576<br>0.0628                   | CAP / CAP-D5<br>321 > 194<br>0.0238<br>0.0248<br>0.0248<br>0.0238<br>0.0271                             | 321 > 152<br>0.1098<br>0.1095<br>0.1167<br>0.1071<br>0.1099                   |
| Injection<br>1<br>2<br>3<br>4<br>5 | CAP - D5<br>326 > 157<br>2977<br>2859<br>2786<br>2811<br>2802 | 321 > 257<br>214<br>172<br>197<br>162<br>176 | 0.1 ppb s<br>CAP<br>321 > 194<br>71<br>81<br>69<br>67<br>76 | 121 > 152<br>321 > 152<br>327<br>313<br>325<br>301<br>308<br>AVG        | 321 > 257<br>0.0719<br>0.0602<br>0.0707<br>0.0576<br>0.0628<br>0.065          | CAP / CAP-D5<br>321 > 194<br>0.0238<br>0.0283<br>0.0248<br>0.0238<br>0.0271<br>0.026                    | 321 > 152<br>0.1098<br>0.1095<br>0.1167<br>0.1071<br>0.1099<br>0.111          |
| Injection<br>1<br>2<br>3<br>4<br>5 | CAP - D5<br>326 > 157<br>2977<br>2859<br>2786<br>2811<br>2802 | 321 > 257<br>214<br>172<br>197<br>162<br>176 | 0.1 ppb s<br>CAP<br>321 > 194<br>71<br>81<br>69<br>67<br>76 | pike level<br>321 > 152<br>327<br>313<br>325<br>301<br>308<br>AVG<br>SD | 321 > 257<br>0.0719<br>0.0602<br>0.0707<br>0.0576<br>0.0628<br>0.065<br>0.006 | CAP / CAP-D5<br>321 > 194<br>0.0238<br>0.0248<br>0.0238<br>0.0248<br>0.0238<br>0.0271<br>0.026<br>0.002 | 321 > 152<br>0.1098<br>0.1095<br>0.1167<br>0.1071<br>0.1099<br>0.111<br>0.004 |

Table 3. Precision of the injection

The method was then tested on some real life shrimp samples issued from the chloramphenicol crisis. One sample was found negative while two samples were found contaminated with chloramphenicol at 0.43 and 0.80 ppb. The chloramphenicol was clearly identified in these samples according to the EU recommendations. **Figure 4** shows the LC-MS-MS chromatograms obtained for the real sample at 0.43 ppb.



# Conclusion

A rapid and sensitive method for the identification and quantitation of chloramphenicol using liquid chromatography with a new compact mass spectrometry (LC-MS/MS) system was developed and was successfully applied on real life shrimp samples.



# **Poster**REPRINT

# Author to whom all correspondence should be addressed: Nico V. Eeckhout Micromass BV, Bedrijvencentrum Vilvoorde, Mechelsesteenweg 277 Box 9, B-1800 Vilvoorde, Belgium Tel: 02 2534550

e-mail: nico.v.eeckhout@micromass.net

WATERS CORPORATION 34 Maple St. Milford, MA 01757 U.S.A. T: 508 478 2000 F: 508 872 1990 www.waters.com

Made in the United Kingdom





©2002 Waters Corporation November 2002 / WMP204 For research use only. Not for use in diagnostic procedures.

