Waters

THE USE OF SEARCH WORKFLOWS IN PEPTIDE ASSIGNMENT FROM MS/MS DATA

Richard Denny, Kieran Neeson, Catriona Rennie, Keith Richardson, Steve Leicester, Neil Swainston, Jennifer Worroll, Phillip Young. Waters Corporation, Manchester, UK

Presented at ABRF 2002, Austin, Texas, USA, 9th - 12th March 2002

Introduction

Whilst significant advances have been made in the identification of tryptic peptides and thus proteins from tandem mass spectrometry data, it is apparent that many spectra remain unassigned. Reasons for lack of assignment of the spectra include databank incompleteness, point mutations, post translational modifications not selected by the user, and non-specific cleavage by trypsin.

In an effort to increase the assignment rate of tandem mass spectrometry data to peptides, we have implemented a new algorithm known as Automod, which on input of protein sequences, generates all possible peptides from a sequence, and then using a library of post-translational modifications and point mutations attempts to assign tandem mass spectrometry data to the generated peptides. Furthermore, we have extended our de novo peptide sequencing algorithm to include batch processing, so that more than more spectrum can be interpreted in a search.

By using the same peptide fragmentation model and scoring scheme for databank searching, automod and de novo sequencing (**Figure 1**), we are able to chain these different search strategies together into a data interpretation workflow. In this poster we present example data illustrating the power of this approach.

Figure 1. Schematic of workflow system

Method

A two protein mix consisting of pyruvate kinase and fructose bi-phosphate was digested using trypsin.

The tryptic digest mixture was directly injected, with 1uL of the solution applied to the LC-MS/MS set-up. The Micromass CapLC system initially flowed at a flow rate of 30μ L/min whilst the sample was injected and pre-concentrated on a 320μ Mx1mm pre-column. The peptides were then eluted onto an analytical C₁₈ PepMap column (150mmx75 μ M) and a gradient was run from 5% acetonitrile: 95% water (both containing 0.1% formic acid) to 60% acetonitrile after 40 minutes at a flow rate of 200nL/min. The LC eluent from this column then entered the Nanoflow source of the mass spectrometer.

The Q-Tof Ultima API mass spectrometer was operated in positive ion mode with a source temperature of 80°C, a counter current gas flow rate of 50L/hr and with a potential of 3400 V applied to the Nanoflow probe body. Both MS and MS/MS data was acquired with the TOF analyser with data integrated every second.

Waters

Analysis of the sample by MS/MS was achieved in the data directed analysis mode (DDA). In this mode of operation the Q-Tof automatically selected precursor ions based upon ions rising above a predetermined intensity threshold and possessing a charge state of 2+ or 3+. At one particular decision time interval the instrument would consider selecting 2 precursor ions for MS/MS. In the MS/MS mode the quadrupole was used in resolving mode to select the precursor ion of interest, for fragmentation in the hexapole collision cell. MS/MS was performed with argon gas in the collision cell at a pressure of 6x10⁻⁵ mbar measured in the analyser. MS/MS data was acquired for a maximum of 4 seconds per component.

The resulting spectra were processed using the MaxEntLite algorithm which performs deconvolution, centering and de-isotoping in one step. Using a small databank consisting of pyruvate kinase and trypsinogen we designed a search workflow consisting of a databank search, Automod search and de novo peptide sequencing search (**Figures 2 - 4**). At each stage the results of the previous stage were filtered on peptide score. Any precursor masses that remained unmatched to peptides were used in searching.

The workflow was submitted to the ProteinLynx search engine. The sequences obtained in the *de novo* step were then searched for homology in the Swissprot databank using BLAST at NCBI.

Figure 2. Setting up the databank search in ProteinProbe

Figure 3. Setting up the Automod search in ProteinProbe

Figure 4. Setting up the de novo query in ProteinProbe

Results

Analysis of the raw data with MaxEntLite produced 250 MS/MS spectra.

The resulting workflow search results are shown in **Figure 5**. **Tables 1-3** show the number of peptides identified at each stage of the workflow.

In the first databank search stage 1 peptide from Trypsin was identified along with 20 peptides from pyruvate kinase (**Table 1**).

The second stage Automod search revealed a further 12 new peptides most of which were the result of non-specific cleavage by Trypsin (**Figure 6**). An additional peptide previously identified in the databank search stage was found with a deamidation modification (**Table 2**).

Waters

The third *de novo* peptide sequencing stage produced a set of 4 peptides not found in the databank search or Automod stages. Analysis of the sequences with BLAST found significant homology to fructose bi-phosphate (**Table 3**).

Manual inspection of the unassigned spectra at the end of the workflow revealed that the remaining data was inconclusive.

Figure 5. Result of workflow in ProteinProbe

m/z	charge	mw	Sequence	Protein
420.7678	2	839.5228	APIIAVTR	KPY1_RABIT Pyruvate Kinase
434.7427	2	867.4749	MQHLIAR	KPY1_RABIT Pyruvate Kinase
439.2411	2	876.4705	LFEELAR	KPY1_RABIT Pyruvate Kinase
473.2585	2	944.5114	VNLAMNVGK	KPY1_RABIT Pyruvate Kinase
495.7581	2	989.5029	GSGTAEVELK	KPY1_RABIT Pyruvate Kinase
503.2892	2	1004.565	KLFEELAR	KPY1_RABIT Pyruvate Kinase
510.263	2	1018.508	GDYPLEAVR	KPY1_RABIT Pyruvate Kinase
559.807	2	1117.598	GSGTAEVELKK	KPY1_RABIT Pyruvate Kinase
571.3073	2	1140.603	GDLGIEIPAEK	KPY1_RABIT Pyruvate Kinase
577.2921	2	1152.566	SSGTSYPDVLK	TRY1_BOVIN Trypsinogen
586.3216	2	1170.624	LDIDSAPITAR	KPY1_RABIT Pyruvate Kinase
588.9966	3	1763.978	KGVNLPGAAVDLPAVSEK	KPY1_RABIT Pyruvate Kinase
599.2922	2	1196.575	ITLDNAYMEK	KPY1_RABIT Pyruvate Kinase
607.9769	3	1820.909	RFDEILEASDGIMVAR	KPY1_RABIT Pyruvate Kinase
634.6208	3	1900.853	MNFSHGTHEYHAETIK	KPY1_RABIT Pyruvate Kinase
708.0269	3	2121.074	QKGPDFLVTEVENGGFLGSK	KPY1_RABIT Pyruvate Kinase
724.9045	2	1447.792	VYVDDGLISLQVK	KPY1_RABIT Pyruvate Kinase
818.9482	2	1635.883	GVNLPGAAVDLPAVSEK	KPY1_RABIT Pyruvate Kinase
818.9496	2	1635.883	GVNLPGAAVDLPAVSEK	KPY1_RABIT Pyruvate Kinase
821.8917	2	1641.763	DPVQEAWAEDVDLR	KPY1_RABIT Pyruvate Kinase
833.4104	2	1664.808	FDEILEASDGIMVAR	KPY1_RABIT Pyruvate Kinase
933.4625	2	1864.921	GPDFLVTEVENGGFLGSK	KPY1_RABIT Pyruvate Kinase

Table 1. Results of databank search stage

m/z	Charge	mw	Sequence	Protein	Sub / Mod
420.711	2	839.402	GSVEASYK	KPY1_RABIT Pyruvate Kinase	
424.72	2	847.422	SDGIMVAR	KPY1_RABIT Pyruvate Kinase	
437.754	2	873.492	IVLTESGR	KPY1_RABIT Pyruvate Kinase	
457.272	2	912.528	PVAVALDTK	KPY1_RABIT Pyruvate Kinase	
482.736	2	963.456	TGWRPGSGF	KPY1_RABIT Pyruvate Kinase	
521.751	2	1041.48	AMGSVEASYK	KPY1_RABIT Pyruvate Kinase	
529.812	2	1057.613	ALIVLTESGR	KPY1_RABIT Pyruvate Kinase	
534.25	2	1066.487	PGSGFTNTMR	KPY1_RABIT Pyruvate Kinase	
542.753	2	1083.491	TLDNAYMEK	KPY1_RABIT Pyruvate Kinase	
785.894	2	1569.767	TATESFASDPILYR	KPY1_RABIT Pyruvate Kinase	
799.412	2	1596.803	FLVTEVEDGGFLGSK	KPY1_RABIT Pyruvate Kinase	D for N (8)
933.962	2	1865.905	GPDFLVTEVEDGGFLGSK	KPY1_RABIT Pyruvate Kinase	D for N (11)
1053.035	2	2104.048	QKGPDFLVTEVENGGFLGSK	KPY1_RABIT Pyruvate Kinase	Pyrrolidone carboxylic acid N-TERM (N-term)

Table 2. Results of Automod search

m/z	charge	mw	Sequence	Sequence from BLAST	Protein
470.745	2	939.477	ELSDLAHR	ELSDIAHR	ALFA_RABIT Fructose bi-phosphate
666.853	2	1331.682	LGLAADESTTELL	LAADEST	ALFA_RABIT Fructose bi-phosphate
745.853	2	1489.69	LQSLGTEEDEEKL	LQSIGTENTEE	ALFA_RABIT Fructose bi-phosphate
469.234	2	936.43	QEEYVRN	QEEYV	Sequence too short for determination

Table 3. Results of de novo search followed by BLAST

SKSHSEAGSA	FIQTQQLHAA	MADTFLEHMC	RLDIDSAPIT	ARNTGIICTI	
GPASRSVETL	KEMIKSGMNV	ARMNFSHGTH	EYHAETIKNV	RTATESFASD	
PILYRPVAVA	LDTK GPEIRT	GLIKGSGTAE	VELKKGATLK	ITLDNAYMEK	
CDENILWLDY	KNICKVVDVG	SKVYVDDGLI	SLQVKQKGPD	FLVTEVENGG	
FLGSKKGVNL	PGAAVDLPAV	SEKDIQDLKF	GVEQDVDMVF	ASFIRKAADV	
HEVRKILGEK	GKNIKIISKI	ENHEGVRRFD	EILEASDGIM	VARGDLGIEI	
PAEKVFLAQK	MIIGRCNRAG	KPVICATQML	ESMIKKPRPT	RAEGSDVANA	
VLDGADCIML	SGETAKGDYP	LEAVRMQHLI	AREAEAAMFH	RKLFEELARS	
SSHSTDLMEA	MAMGSVEASY	KCLAAALIVL	TESGRSAHQV	ARYRPRAPII	
AVTRNHQTAR	QAHLYRGIFP	VVCKDPVQEA	WAEDVDLRVN	LAMNVGKARG	
FFKKGDVVIV	LTGWRPGSGF	TNTMRVVPVP			

Figure 6. Non-specific cleavage peptides found in Automod stage

Conclusion

We have shown that use of an extended peptide identification system incorporating separate PTM analysis, amino acid substitution and *de novo* sequencing can enhance overall protein identification from tandem mass spectrometry data.

PosterREPRINT

Author to whom all correspondence should be addressed: Phillip Young Waters Corporation (Micromass UK Limited) Floats Road, Wythenshawe Manchester, M23 9LZ Tel: + 44 (0) 161 946 2400 Fax: + 44 (0) 161 946 2480 e-mail: phillip.young@micromass.co.uk

WATERS CORPORATION 34 Maple St. Milford, MA 01757 U.S.A. T: 508 478 2000 F: 508 872 1990 www.waters.com

Made in the United Kingdom

©2002 Waters Corporation November 2002 / WMP193 For research use only. Not for use in diagnostic procedures.

Certificate No: 951387