Nominal mass and amino acid changes genetically governed by single base changes in the nucleotide codon

This table shows the amino acid residue changes and the corresponding nominal molecular weight (mass) changes (Da) that are genetically determined by single mutations in the nucleotide codon (coding triplet).

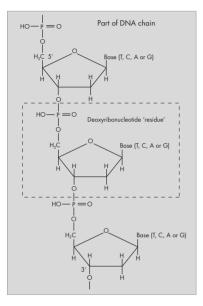
In the context of the human hemoglobin α - and β -chains that contain no isoleucine, there are 141 ways of producing a single amino acid mutation. Of these, 127 (90%) produce a mass change of more than 6 Da and hence can be resolved in normal-variant heterozygotes by analyzing the intact α - and β -chains from human blood samples by electrospray ionization mass spectrometry and deconvoluting the data by MaxEntTM, the maximum entropy based software described in Technical Note 202 and Application Note 212.

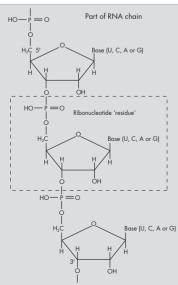
Mass change	Amino acid change	Mass change	Amino acid change	Mass change	Amino acid change	Mass change	Amino acid change
0	$\begin{array}{l} GIn \leftrightarrow Lys \\ IIe \leftrightarrow Leu \end{array}$	16	Ala ↔ Ser Phe ↔ Tyr	30	Ala ↔ Thr Arg ↔ Trp	53	$Cys \leftrightarrow Arg$
1	$\begin{array}{l} Asn\leftrightarrowAsp\\ Gln\leftrightarrowGlu\\ Ile\leftrightarrowAsn\\ Lys\leftrightarrowGlu \end{array}$		Pro ↔ Leu		$Gly \leftrightarrow Ser$	55	$Thr \leftrightarrow Arg$
			$\begin{array}{l} Ser \leftrightarrow Cys \\ Val \leftrightarrow Asp \end{array}$		Thr ↔ Met Val ↔ Glu	58	Ala ↔ Glu Gly ↔ Asp
		18	$Ile \leftrightarrow Met$	31	$Pro \leftrightarrow Gln$, ,
3	Lys \leftrightarrow Met		$Leu \leftrightarrow Met$	32	$Val \leftrightarrow Met$	59	$Pro \leftrightarrow Arg$
4	$Pro \leftrightarrow Thr$	19	$His \leftrightarrow Arg$	34	$lle\leftrightarrowPhe$	60	$\begin{array}{l} Cys \leftrightarrow Tyr \\ Ser \leftrightarrow Phe \end{array}$
9	$GIn \leftrightarrow His$	22	$Asp \leftrightarrow His$		$Leu\leftrightarrowPhe$	69	$Ser \leftrightarrow Arg$
10	$Ser \leftrightarrow Pro$	23	$Asn \leftrightarrow His$	40	$Pro \leftrightarrow His$	72	$Gly \leftrightarrow Glu$
12	Thr \leftrightarrow lle	24	$Leu \leftrightarrow His$	42	$Gly \leftrightarrow Val$	73	Leu ↔ Trp
13	$Thr \leftrightarrow Asn$	25	$Met \leftrightarrow Arg$	43	lle ↔ Arg Leu ↔ Arg	76	Ser ↔ Tyr
14	$\begin{array}{c c} & 26\\ Asn \leftrightarrow Lys\\ Asp \leftrightarrow Glu\\ Gly \leftrightarrow Ala\\ Ser \leftrightarrow Thr\\ Val \leftrightarrow Ile\\ Val \leftrightarrow Leu \end{array}$	26	$\begin{array}{l} Ala \leftrightarrow Pro \\ His \leftrightarrow Tyr \end{array}$	44	Ala ↔ Asp	83	Cys ↔ Trp
			Ser ↔ Ile Ser ↔ Leu	46	$Cys\leftrightarrowPhe$ $Gly\leftrightarrowCys$	99	$\begin{array}{l} Gly \leftrightarrow Arg \\ Ser \leftrightarrow Trp \end{array}$
		27	$\begin{array}{l} Ser \leftrightarrow Asn \\ Thr \leftrightarrow Lys \end{array}$	48	Asp ↔ Tyr	129	Gly ↔ Trp
15	$\begin{array}{l} lle \leftrightarrow Lys \\ Leu \leftrightarrow Gln \end{array}$		Ala ↔ Val Gln ↔ Arg Lys ↔ Arg		$Val \leftrightarrow Phe$		
				49	$Asn \leftrightarrow Tyr$		

MassLyn, .4.0

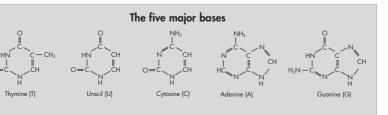
MALDI ELECTROSPRAY MS MS-MS Mass-Informatics™

MICROMASS MS TECHNOLOGIES


WATERS CORPORATION USA Milford, MA Tel: 508 478 2000 EUROPE France Tel: 1 3048 7200



©2003 Waters Corporation January 2003 02/00484 WCH16/DAM Version 2 720000540EN


The Genetic Code

The primary source of the genetic code, DNA, is a chain of deoxyribonucleotides (deoxyribonucleic acids interconnected by phosphodiester bonds), which occur with four different structures defined by the bases thymine (T), cytosine (C), adenine (A) and guanine (G). Transcription copies DNA into messenger RNA, which is a chain of ribonucleotides of similar structure to DNA except that thymine is replaced by uracil (U). The notation for chains of nucleotides are the letters T, C, A, G for DNA and U, C, A, G for RNA, written left to right from the 5' end to the 3' end of a chain. Each group of three consecutive (and in frame) DNA or RNA nucleotides (codon or coding triplet) encodes one amino acid in a protein. The table below lists the DNA codons that encode the twenty common amino acids in proteins. To apply the table to RNA, replace T by U.

The DNA codons for the twenty commonly occurring amino acids							
Amino Acid	Codon	Amino Acid	Codon	Amino Acid	Codor		
Alanine Ala, A	GCT GCC GCA GCG	Glycine Gly, G	GGT GGC GGA GGG	Proline Pro, P	CCT CCC CCA CCG		
Arginine Arg, R	CGT CGC CGA CGG AGA AGG	Histidine His, H	CAT CAC	Serine Ser, S	TCT TCC TCA TCG AGT AGC		
		Isoleucine Ile, I	att atc ata				
Asparagine Asn, N	AAT AAC	Leucine Leu, L	TTA TTG CTT	Threonine Thr, T	ACT ACC ACA ACG		
Aspartic Acid Asp, D	GAT GAC		CTC CTA		TGG		
Cysteine	TGT		CTG	Tryptophan Trp, W			
Cys, C	TGC	Lysine Lys, K	AAA AAG	Tyrosine	TAT		
Glutamine Gln, Q	CAA CAG	Methionine	ATG	Tyr, Y	TAC		
Glutamic Acid	GAA	Met, M		Valine Val, V	GTT GTC		
Glu, E	GAG	Phenylalanine TTT Phe, F TTC			GTA GTG		
ATG also ser For	Chain termination	taa Tag Tga					

Data for the calculation of the masses of oligonucleotides for use in mass spectrometry

The molecular weight (mass) of an oligodeoxyribonucleotide (DNA) or oligoribonucleotide (RNA) may be calculated by summing the masses of the appropriate nucleotide 'residues' from the table below and making an allowance for the terminal groups as shown in the table.

Nucleotide 'residue'								
	Nucleotide	Elemental composition	Monoisotopic mass	Average mass				
DNA	Thymine (T) Cytosine (C) Adenine (A) Guanine (G)	$\begin{array}{c} C_{10}H_{13}N_{2}O_{7}P\\ C_{9}H_{12}N_{3}O_{6}P\\ C_{10}H_{12}N_{5}O_{5}P\\ C_{10}H_{12}N_{5}O_{6}P\end{array}$	304.04604 289.04637 313.05761 329.05252	304.1963 289.1847 313.2097 329.2091				
RNA	Uracil (U) Cytosine (C) Adenine (A) Guanine (G)	$\begin{array}{c} C_{9}H_{11}N_{2}O_{8}P\\ C_{9}H_{12}N_{3}O_{7}P\\ C_{10}H_{12}N_{5}O_{6}P\\ C_{10}H_{12}N_{5}O_{7}P\end{array}$	306.02530 305.04129 329.05252 345.04744	306.1688 305.1841 329.2091 345.2085				
Both hy	ate/hydroxyl	H minus PO2 H2O H3PO4	-61.95577 18.01056 97.97690	-61.9646 18.0153 97.9952				

The monoisotopic masses were calculated using the following atomic masses of the most abundant isotope of the elements:

C=12.0000000, H=1.0078250, N=14.0030740, O=15.9949146, P=30.9737634.

The average masses were calculated using the following atomic weights of the elements: C=12.011, H=1.00794, N=14.00674, O=15.9994, P=30.97376. Atomic Weights of the Elements 1991, IUPAC Commission on atomic weights and isotopic abundances, Pure and Appl. Chem., **64** (10), 1519-1534 (1992).

