# An Integrated Workflow for Automatic Mapping of Disulfide Linkages of Therapeutic Proteins Using High-Resolution Mass Spectrometry and a Targeted Software

#### Hongwei Xie and Weibin Chen

Biopharmaceutical Sciences, Waters Corporation, 34 Maple Street, Milford, MA 01757

## **OVERVIEW**

- featuring high-resolution UPLC • An integrated workflow separation, multiplexed MS data acquisition (MS<sup>E</sup>), and automatic batch processing of data by BiopharmaLynx (ver 1.3), is developed for fast mapping of protein disulfide bonds
- Highly reproducible, fully annotated peptide maps for therapeutic proteins can be routinely acquired using the workflow
- The workflow enables automatic assignment of disulfide bonded peptides (including scrambled ones) in the same run as peptide profiling

### **EXPERIMENTAL METHODS**

#### Samples:

- RapiGest SF<sup>™</sup> aided Lys-C digested IgG1

#### **Instrumentation**:

- Liquid Chromatography, ACQUITY UPLC®
- Mass spectrometers Xevo<sup>™</sup> G2 QTof or Synapt<sup>™</sup> G2 HDMS

#### Columns:

– Peptide Separation Technology, ACQUITY UPLC<sup>®</sup> C4 BEH300 1.7µm, 2.1×150 mm

#### Informatics:

– BiopharmaLynx<sup>™</sup> ver 1.3 application manager









Figure 1. Waters biopharmaceutical LC/MS system: ACQUITY UPLC<sup>®</sup> LC, *Xevo™ G2 QTof/Synapt G2 HDMS, and BiopharmaLynx Informatics* 



|    |                        |                 |                        |                           |                  |                            | _ |
|----|------------------------|-----------------|------------------------|---------------------------|------------------|----------------------------|---|
|    | 🔟 📝 🗉                  | 1 🔜 🔜 谢         | 📉 🐹                    |                           |                  |                            |   |
|    | ▼ <sup>1</sup> Protein | Fragment Number | Modifiers              | Calculated Peptide Mass ( | Control RT (Min) | Control Intensity (Counts) | C |
| 1  | Trastuzumab            | 2:K14-4:K14     |                        | 5004.4878                 | 75.93            | 1309166.0                  |   |
| 2  | Trastuzumab            | 1:K6            |                        | 2101.1208                 | 51.58            | 1030857.0                  |   |
| 3  | Trastuzumab            | 2:K16-2:K21     |                        | 3144.5142                 | 46.36            | 994145.0                   |   |
| 4  | Trastuzumab            | 1:K7-1:K13      |                        | 3883.9236                 | 48.71            | 925899.0                   |   |
| 5  | Trastuzumab            | 2:K7-2:K8       |                        | 7389.6489                 | 76.73            | 918845.0                   |   |
| 6  | Trastuzumab            | 2:K29           |                        | 1872.9146                 | 53.18            | 898695.0                   |   |
| 7  | Trastuzumab            | 2:K3            |                        | 2558.2917                 | 50.23            | 729825.0                   |   |
| 8  | Trastuzumab            | 2:K7-2:K8-9     |                        | 7916.9194                 | 74.18            | 638662.0                   |   |
| 9  | Trastuzumab            | 2:K28           |                        | 2543.1240                 | 50.70            | 606959.0                   |   |
| 10 | Trastuzumab            | 2:K26           |                        | 2342.1689                 | 30.29            | 570005.0                   |   |
| 11 | Trastuzumab            | 2:K27-2:K31     |                        | 4087.9568                 | 40.81            | 547834.0                   |   |
| 12 | Trastuzumab            | 1:K10           |                        | 1501.7512                 | 37.72            | 531996.0                   |   |
| 13 | Trastuzumab            | 2:K17           |                        | 1676.7947                 | 39.59            | 462691.0                   |   |
| 14 | Trastuzumab            | 2:K18-19*       | Glycosylation G0F N(1) | 4904.3237                 | 53.42            | 407729.0                   |   |
| 15 | Trastuzumab            | 2:K18-19*       | Glycosylation G1F N(1) | 5066.3774                 | 53.12            | 393583.0                   |   |
| 16 | Trastuzumab            | 2:K6            |                        | 1185.6394                 | 34.68            | 341814.0                   |   |
| 17 | Trastuzumab            | 1:K1-1:K4       |                        | 10657.1172                | 70.59            | 309054.0                   |   |
| 18 | Trastuzumab            | 1:K9            |                        | 2134.9614                 | 17.66            | 291272.0                   |   |
| 19 | Trastuzumab            | 2:K2            |                        | 1569.8052                 | 27.40            | 109031.0                   |   |
| 20 | Trastuzumab            | 2:K32           |                        | 659.3490                  | 17.97            | 99315.0                    |   |
| 21 | Trastuzumab            | 2:K3-4          |                        | 3721.8853                 | 76.74            | 62188.0                    |   |
| 22 | Trastuzumab            | 2:K4            |                        | 1181.6040                 | 14.32            | 61359.0                    |   |
| 23 | Trastuzumab            | 2:K23           |                        | 837.4960                  | 20.94            | 54750.0                    |   |
| 24 | Trastuzumab            | 2:K19*          | Glycosylation GOF N(1) | 4675.1812                 | 56.71            | 39512.0                    |   |
| 25 | Trastuzumab            | 2:K25-26        |                        | 2541.3010                 | 51.75            | 33107.0                    |   |
| 26 | Trastuzumab            | 2:K1-2:K5       |                        | 8303.9404                 | 66.93            | 32320.0                    |   |
| 27 | Trastuzumab            | 2:K19*          | Glycosylation G1F N(1) | 4837.2349                 | 56.42            | 28100.0                    |   |
| 28 | Trastuzumab            | 2:K14-4:K14-15  |                        | 5229.6357                 | 72.82            | 21149.0                    |   |
| 29 | Trastuzumab            | 2:K28x2         |                        | 5086.2480                 | 50.69            | 12634.0                    |   |
| 30 | Trastuzumab            | 2:K29           |                        | 1872.9146                 | 52.36            | 12387.0                    |   |
| 31 | Trastuzumab            | 1:K8            |                        | 559.3118                  | 4.84             | 10113.0                    |   |
| 32 | Trastuzumab            | 2:K1-2:K5       |                        | 8303.9404                 | 67.51            | 9723.0                     |   |
| 33 | Trastuzumab            | 2:K17           |                        | 1676.7947                 | 38.51            | 7720.0                     |   |
| 34 | Trastuzumab            | 2:K30           |                        | 574.3326                  | 14.33            | 6560.0                     |   |
| 35 | Trastuzumab            | 2:K29x2         |                        | 3745.8291                 | 53.17            | 6190.0                     |   |
| 36 | Trastuzumab            | 2:K14-4:K14     |                        | 5004.4878                 | 72.65            | 6005.0                     |   |
| 37 | Trastuzumab            | 2:K19-20*       | Glycosylation GOF N(1) | 5095.3818                 | 76.00            | 4693.0                     |   |
|    |                        |                 |                        |                           |                  |                            |   |

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS





1333.67

1333.55











## CONCLUSIONS

- Fast mapping of disulfide linked peptides has been achieved using LC-MS<sup>E</sup> methodology coupled with BiopharmaLynx informatics
- Assignment of disulfide bonded peptides is automated, based on accurate MS measurement and confirmed by elevated-energy MS<sup>E</sup> fragmentation data
- Effective sample preparation in combination with robust analytical workflow facilitates routine analysis of disulfide bonded peptides within a non-reduced peptide map
- Automatic detection and confirmation of both expected and scrambled disulfide bonded peptides have been achieved in a same workflow.