Waters

Improving LC Separations: Transferring Methods from HPLC to UPLC™

Eric Grumbach, Tom Wheat, Doug McCabe, Diane Diehl, and Jeff Mazzeo Waters Corporation

An approach to improving separations by transferring methods from HPLC to UPLC™ is outlined.

Ultra performance liquid chromatography (UPLCTM) is a technological breakthrough in separation science. Significant gains in speed, sensitivity, and resolution are enabled by UPLCTM. To harness the power of UPLCTM in analytical laboratories, many HPLC methods can easily and routinely be transferred to UPLCTM by using readily available tools. In this application, we will transfer a method for the separation of caffeic acid derivatives found in echinacea purpurea from HPLC to UPLCTM.

HPLC Conditions

Column: XTerra[®] MS C18 4.6 \times 150 mm, 5 μ m Mobile Phase A: 0.1% TFA in water Mobile Phase B: 0.08% TFA in acetonitrile Flow Rate: 1.0 mL/min

11000 10000 110 111					
Gradient Profile:	Time	Profile			
		(min)	%A	%B	curve
		0.0	92	8	
		2.0	92	8	6
		32.0	50	50	7
		35.0	10	90	6
		36.0	92	8	6
		41.0	92	8	6

Injection Volume: 10 µL

Sample Concentration: 100 µg/mL

Column Temperature: 40 °C

Detection: UV @ 330 nm

Sampling Rate: 5 pts/s

Time Constant: 1.0

Instrument:Waters[®] Alliance[®] 2695 Separations Module with 2996 PDA

In this case, the HPLC column is an XTerra® MS C18 column. We can use the Waters Reversed-Phase Column Selectivity Chart to choose the ACQUITY UPLCTM chemistry that is closest in selectivity to the HPLC column. This tool is available at www.waters.com/selectivitychart. Using the tool, the ACQUITY UPLCTM BEH C18 column is closest in selectivity.

The HPLC column dimensions were 4.6×150 mm, 5 μ m. To maintain the same resolution, we select a UPLCTM column that has a similar column length to particle size ratio (L/dp) as the HPLC column. Thus, we selected a 2.1×50 mm, 1.7μ m UPLCTM column.

To scale the separation from HPLC to UPLC™ a series of

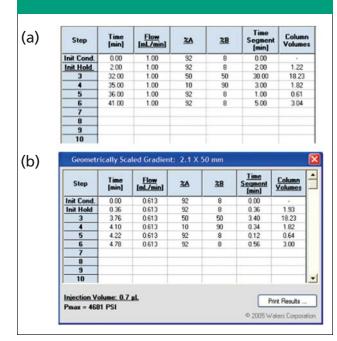


Figure 1: Gradient tables from the ACQUITY UPLC[™] Columns Calculator. A) Original HPLC gradient table as entered into the calculator. B) Geometrically scaled gradient at UPLC[™] linear velocity as generated by the calculator.

calculations are performed to scale the flow rate, injection volume and gradient table. To ensure accurate and quick scaling, the ACQUITY UPLCTM Columns Calculator handles all of the appropriate scaling calculations. We input the HPLC conditions into the calculator (as shown in Figure 1A) and the UPLCTM conditions are automatically displayed (as shown in Figure 1B).

Scaled UPLC™ Conditions

Column: ACQUITY UPLCTM BEH C18 2.1 \times 50 mm, 1.7 μm

Mobile Phase A: 0.1% TFA in water

Mobile Phase B: 0.08% TFA in acetonitrile

Flow Rate: 0.613 mL/min

· · · · · · · · · · · · · · · · · · ·				
Gradient Profile:	Time	Profile		
	(min)	%A	%В	curve
	0.00	92	8	
	0.36	92	8	6
	3.76	50	50	7
	4.10	10	90	6
	4.22	92	8	6
	4.78	92	8	6

Injection Volume: 0.7 µL

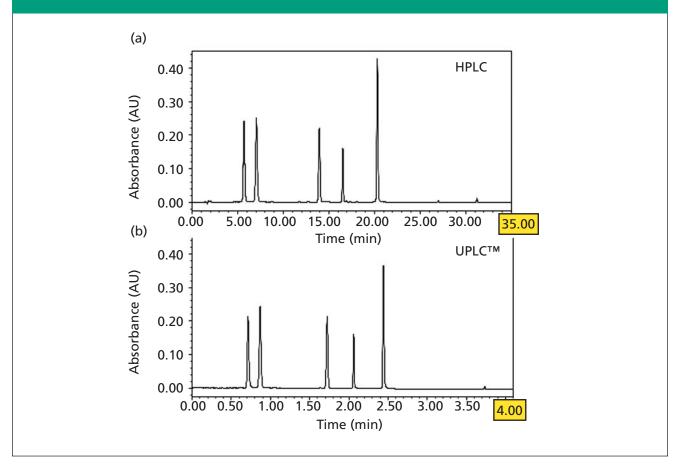


Figure 2: Separation of caffeic acid derivatives found in echinacea purpurea. A) HPLC separation. B) UPLC™ separation.

Sample Concentration: 100 μg/mL Column Temperature: 40 °C Detection: UV @ 330 nm Sampling Rate: 20 pts/s Time Constant: 0.2 Instrument: ACQUITY UPLCTM with ACQUITY 2996 PDA

Table I. Retention time and USP resolution data for the original

HPLC method and the method transferred to UPLC™.						
Name	Retention Time (min)	USP Resolution				
HPLC Data						
1. Caftaric acid	5.71					
2. Chlorogenic acid	7.07	4.20				
3. Cynarin	13.96	21.19				
4. Echinacoside	16.54	10.16				
5. Cichoic acid	20.32	17.14				
UPLC™ Data						
1. Caftaric acid	0.71					
2. Chlorogenic acid	0.87	3.96				
3. Cynarin	1.72	22.12				
4. Echinacoside	2.06	11.40				
5. Cichoic acid	2.44	14.28				

Results

The original HPLC method had a cycle time of 41 min and resolution values as listed in Table 1. By using the Waters Reversed-Phase Column Selectivity Chart and the ACQUITY UPLCTM Columns Calculator, we successfully transferred the method to UPLCTM. The new method has very similar resolution as listed in Table 1 and a cycle time of only 4.78 min – an $8.5 \times$ improvement in cycle time.

Conclusions

For improvements in speed, resolution, and sensitivity, HPLC methods can be successfully transferred to UPLCTM by using the available electronic tools. These separation improvements translate into significant cost reductions in the analytical laboratory.

© 2006 Waters Corporation. Waters, UPLC, ACQUITY UPLC, Ultra Performance LC, Alliance and XTerra are trademarks of Waters Corporation.

Waters Corporation

34 Maple Street, Milford, MA 01757 tel. (508) 478-2000, fax (508) 478-1990 www.waters.com