Waters

Paul D. Rainville, Thomas E. Wheat, Richard W. Andrews, and Jeffery R. Mazzeo Waters Corporation, Chemical Applied Technology, 34 Maple Street, Milford, MA, 01757

ABSTRACT

Appropriate qualification procedures for HPLC systems are basic requirements for the validation and use of analytical methods. Peptide mapping is a particularly important tool for the characterization of therapeutic proteins. Because this reversed phase HPLC technique is exceptionally sensitive to experimental variability, it is important to thoroughly characterize the system. A performance qualification test that best mimics peptide analysis is advantageous for predicting how the system will perform with real samples. We have established performance standards for reversed-phase HPLC in conjunction with both UV and MS detection for systems dedicated to running peptide maps. The criteria and specifications include retention time reproducibility, injector reproducibility and injector linearity. Mass accuracy was included for MS configurations. This qualification method includes the use of a well-characterized peptide analyte mix, a tested HPLC column specific for peptide analysis, and a detailed protocol. The developed procedure could also be used as a routine system suitability test.

EXPERIMENTAL

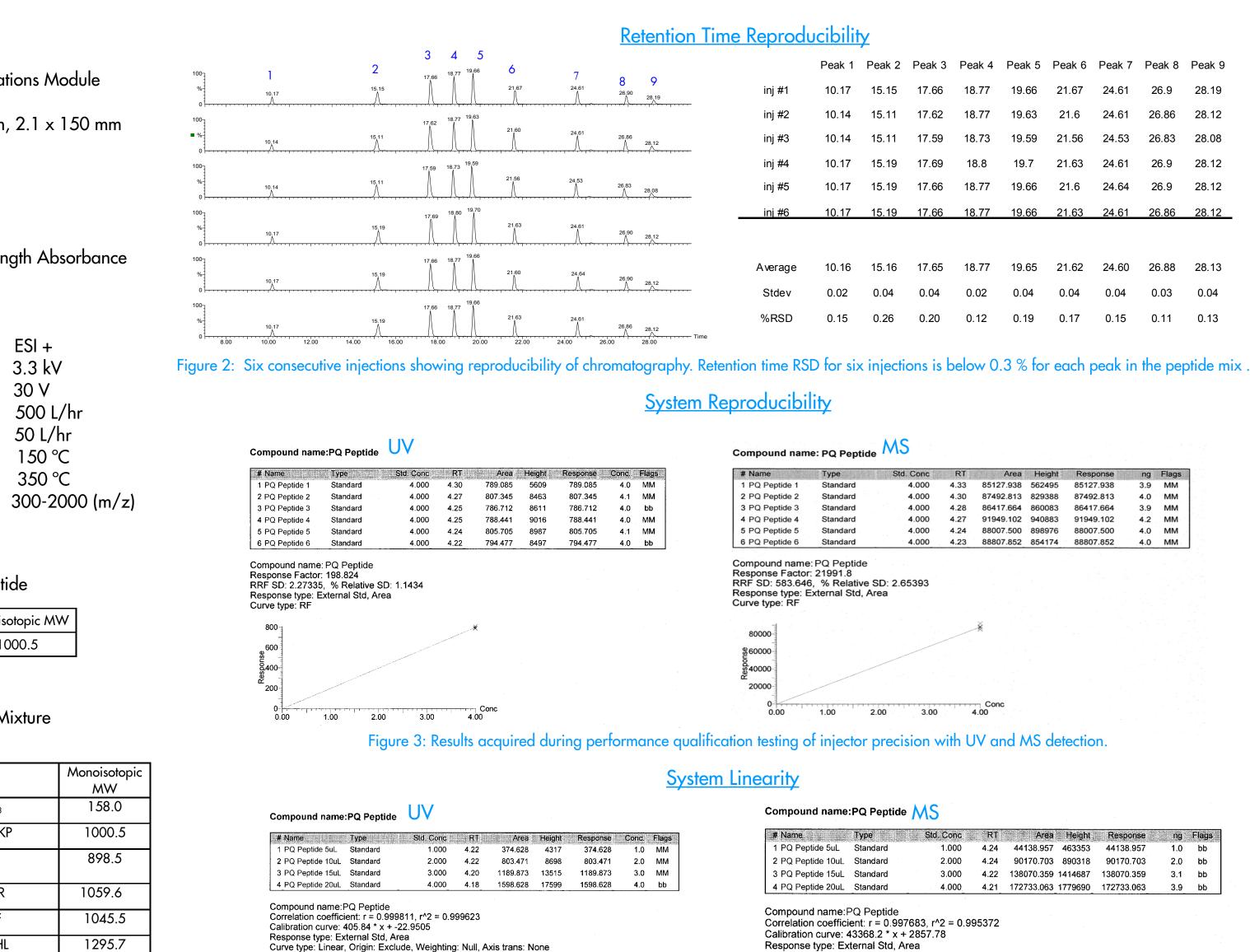
HPLC System:	Waters Alliance® Bioseparat
Column:	Biosuite™ PA-A C ₁₈ , 3.0 µm,
Column temp:	40.0 °C
Flow rate:	0.2 mL/min
Gradient elution:	0–50 %B/30min
Mobile phase:	A: 0.02% TFA
·	B: 0.018%TFA/MeCN
UV Detection:	Waters 2487 Dual Waveleng
	Detector, 214 nm
Mass Spectrometer:	Waters ZQ Mass Detector
MS conditions:	Mode:
	Capillary:
	Cone:
	Desolvation gas flow:
	Cone gas flow:
	Source temperature:
	Desolvation temperature:
	Scan mode

Waters MassPREP™ PQ Peptide

Peptide Name	Sequence	Monoisc
PQ peptide	RGDSPASSKP	10

Waters MassPREP[™] Peptide Mixture

-		
Peak #	Peptide Name	Sequence
1	Allantoin (void marker)	$C_4H_6N_4O_3$
2	RASG-1	RGDSPASSKP
3	Angiotensin Fragment 1-7	DRVYIHP
4	Bradykinin	RPPGFSPFR
5	Angiotensin II	DRVYIHPF
6	Angiotensin I	DRVYIHPFHL
7	Renin Substrate	DRVYIHPFHLLVYS
8	Enolase T35	WLTGPQLADLYHSLMK
9	Enolase T37	YPIVSIEDPFAEDDWEAWSH FFK
10	Melittin	GIGAVLKVLTTGLPALIS- WIKRKRQQ


Figure 1: BioSuite peptide mapping MS system consisting of the 2796 Bioseparations module, MassLynx[™] software, Waters 2487 dual wavelength detector, the Waters Micromass[®] ZQ mass spectrometer, BioSuite PA columns and MassPrep standards

1757.9

1872.0

2827.3

2845.7

3.00

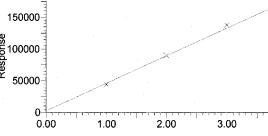
4.00

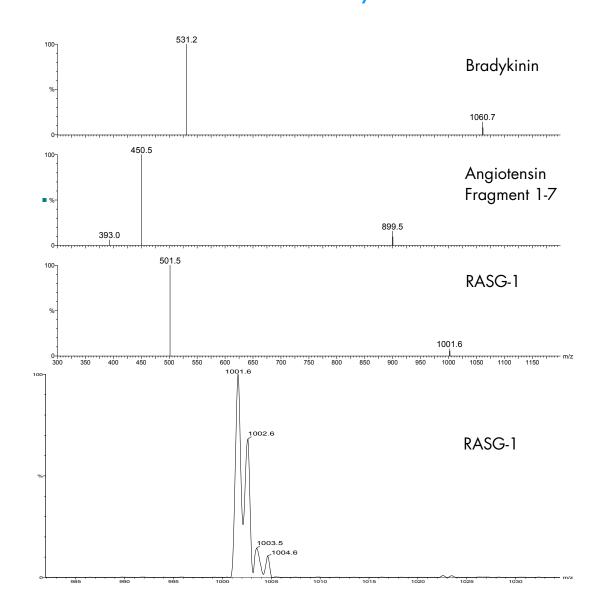
0.00

1.00

2.00

Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: Null, Axis trans: None




Figure 4: Results acquired during performance qualification testing of injector linearity with UV and MS detection.

Peak 5	Peak 6	Peak 7	Peak 8	Peak 9	
19.66	21.67	24.61	26.9	28.19	
19.63	21.6	24.61	26.86	28.12	
19.59	21.56	24.53	26.83	28.08	
19.7	21.63	24.61	26.9	28.12	
19.66	21.6	24.64	26.9	28.12	
19.66	21.63	24.61	26.86	28.12	
19.65	21.62	24.60	26.88	28.13	
0.04	0.04	0.04	0.03	0.04	
0.19	0.17	0.15	0.11	0.13	

Area	Height	Response	ng	Flags	1
127.938	562495	85127.938	3.9	MM	
492.813	829388	87492.813	4.0	MM	1
417.664	860083	86417.664	3.9	MM	
949.102	940883	91949.102	4.2	MM	1.1
007.500	898976	88007.500	4.0	MM	Ι.
807.852	854174	88807.852	4.0	MM	
					1

RL	Area	Height	Response	ng	Flags
24	44138.957	463353	44138.957	1.0	bb
24	90170.703	890318	90170.703	2.0	bb
22	138070.359	1414687	138070.359	3.1	bb
21	172733.063	1779690	172733.063	3.9	bb

4 00

Mass Accuracy

Figure 5: Mass accuracy and resolution of peptides from MassPrep™ peptide standard, mass measurement error is below 100 ppm.

CONCLUSIONS

A systems approach for the qualification of LC-UV/MS instrumentation dedicated for peptide mapping was developed.

The qualification test contains a well-characterized peptide standard mix that elutes over the length of the gradient method.

Injection precision testing using the PQ peptide produced RSD values of less than 2 and 4 percent for UV and MS detection under gradient conditions, respectfully.

Injector linearity testing using the PQ peptide yielded R² values of greater that 0.999 and 0.990 for UV and MS detection under gradient conditions, respectfully.

Mass accuracy measurement error was below 100 ppm.