

The Application of Mass Spectrometry to Metabonomics

Chris Stumpf, Waters Corporation

What is Metabonomics?

- Jeremy Nicholson first used the term 'metabonomics' and defined it as:
 - The quantitative measurement of time-related multiparametric metabolic responses for multi-cellular systems
- Metabonomics is the study of endogenous metabolites and differences in the complement of these metabolites caused by external stimuli
 - exposure to a toxin
 - administration of a therapeutic agent
 - disease

- Metabonomics is an extension of genomics and proteomics
- "Metabolic changes are real-world end points, whereas gene expression changes are not; they merely indicate the potential for an end-point change."
 - Jeremy K. Nicholson, John Connelly, John C. Lindon and Elaine Holmes. <u>Metabonomics: a platform for studying drug toxicity and</u> <u>gene function</u>. Nat. Rev. Drug Disc. 1, 153-161 (2002).
- Studying changes in metabolite concentrations can give valuable information on gene function and mechanisms of disease and toxicity.
- Potential biomarkers of disease and toxicity

MetaboNomics vs. MetaboLomics

Mass Spectrometry Systems

Metabonomics

Vaters

- used primarily by the pharmaceutical and related industries
- concentrates on mammalian systems
- many practitioners started using NMR
- typical application:
 - discovery of markers of toxicity for drug candidate screening
- Metabolomics
 - used primarily by plant science and related sciences
 - study of plants and lower organisms
 - extension of metabolic profiling
 - typical application:
 - investigation of genetic modification

Mass Spectrometry Systems

- Highly complex samples
 - plants may contain 1000's of primary and secondary metabolites
- Wide variety of compound classes
- Wide range of metabolite concentrations
- Large number of samples
- Data analysis is challenging and requires statistical approach
 - principal component analysis
 - partial least squares discriminant analysis

What are the Challenges?

NMR and LC-MS are Complementary

Mass Spectrometry Systems

Advantages of NMR

- Information-rich spectra
- Detects wide range of compounds
- Large dynamic range
- Quantitative response
- Direct analysis of biofluids and intact tissue samples
- Disadvantages of NMR
 - No chromatographic separation possible within time frame
 - Some compounds masked by other metabolite signals
 - Areas of the spectrum hidden by xenobiotic signals
 - Relatively insensitive
 - Some functional groups are NMR invisible

NMR and LC-MS are Complementary

Mass Spectrometry Systems

Using LC-MS on a quadrupole-time of flight mass spectrometer

- Advantages of LC-MS
 - Sensitivity detection of lower level metabolites
 - Information rich exact mass measurement
 - On-line chromatography reduces masking of low level metabolites
 - Can use MS/MS to aid identification
 - Easier to remove xenobiotic contributions
- Disadvantages of LC-MS
 - Lower dynamic range than NMR
 - Need multiple chromatographic methods retention and separation of polar metabolites
 - Isomeric metabolites
 - Response compound dependent

Metabonomics : Study of Known Toxins

- 20 rat urine samples supplied by GSK
- Two time points: 0-8 hr and 8-24hr
- 3 x 2 controls
- 3 compounds, 3 samples per time point, 2 time points
- Simple Sample Prep: Samples centrifuged then diluted 1:4 with distilled water prior to analysis by LC/MS

LC/MS methodology

Mass Spectrometry Systems

Chromatography:

- Column: Waters XTerra® C18 100 x 2mm 3.5µm
- Eluent: Reverse Phase
- Flow Rate: 600 uL/min (slower for LC/MS/MS)
- Mass spectrometry
 - Quattro *micro*TM or Q-Tof microTM
 - Scan range 100-1000m/z
 - Data collected from 0-10mins (30 minutes for LC/MS/MS)

LC/MS TIC data: Qualitative Differences

Waters

Statistical Analysis of the Data

- Biomarkers can be found by analyzing the mass spectra one-byone. However this is cumbersome.
- Principal Component Analysis (PCA) is a multi-variate analysis technique that provides a global view of the data
- PCA shows clusters in data sets and allows the constituents causing the differences between the clusters to be highlighted
- More subtle differences may be highlighted by supervised techniques such as partial least squares - discriminant analysis (PLS-DA)
- These statistical techniques can highlight features in a data set that are not easily found by eye.

Mass Spectrometry Systems

- Need to reduce data set for statistical analysis
- Spectra combined into 1 minute time slices (10 spectra/sample)
- Spectra in 1 amu 'bins'
- Mass-intensity pair lists exported to Excel and then to MatLab
- PCA performed in MatLab
- Note: this is a simplistic treatment of the data. Future work will concentrate on deconvolution of the data to retain retention time information.

Raw Data Processing

PCA for the whole data set

Mass Spectrometry Systems

MassLynx -> Excel -> MatLab (PCA)

MICROMASS MS TECHNOLOGIES

Data from March 2002

PCA investigation from Minute 5 of Chromatogram

Mass Spectrometry Systems

Note: LC Retention Information is Utilized!

lons identified as responsible for PCA separation

Compound dosed	Analyte m/z value	Change
А	283	10 fold increase
А	461	5 fold increase
А	187	10 fold increase
В	338	2 fold reduction
В	283	10 fold increase
В	461	10 fold increase
В	187	10 fold increase
С	283	20 fold increase
С	187	30 fold increase
A,B,C	192	3 fold increase

LC/MS/MS of 192 ion

Identified by MS but missed by NMR!

Mass Spectrometry Systems

Other compounds identified, but due to confidentiality agreement they cannot be shown.

'Focussed' Metabolomics Application

- Flavonoids play essential role in plant physiology
- Beneficial to human health
- Tomatoes contain only small amounts
- Aim to upregulate the flavonoid biosynthesis by genetic engineering
- Apart from the aglycone many variations exist as additions of various sugar moieties to the free hydroxyl groups
- Exact neutral loss acquisitions used to detect formation of new flavonoid-glycosides on a Q-Tof Ultima
 - Collaboration with Plant Research International, The Netherlands

Examples of Flavonoid Structures

Mass Spectrometry Systems

Luteolin

Kaempferol

Mass Spectrometry Systems

- Pentoses $C_5H_{10}O_5$ monoisotopic mass 132.0422
- Deoxyhexose C₆H₁₂O₅ monoisotopic mass 146.0579
- Hexosamine $C_6H_{13}NO_5$ monoisotopic mass 161.0688
- Hexose C₆H₁₂O₆ monoisotopic mass 162.0528
- Hexuronic acid C₆H₁₀O₇ monoisotopic mass 176.0321

*Different combinations of all of these were also monitored for neutral losses. 19 individual masses and/or combined were analysed

Potential Glycosylations

Neutral loss chromatograms from control and transgenic tomatoes

Mass Spectrometry Systems

Control Fruit

Transgenic Fruit

Spectra from peak at 12.3 min showing loss of 3 sugars (deoxyhexose + 2 hexose)

Mass Spectrometry Systems

2509+ (transgenic fruit_2)

Waters

Elemental composition report and structure for peak at 12.3 min

Mass Spectrometry Systems

Selemental Composition

File Edit View Process Help

🖬 🖻 🖻 🖉 🖪 🗶 🛛

Multiple Mass Analysis: 5 mass(es) processed

Tolerance = 6.0 PPM / DBE: min = -1.5, max = 15.0

Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons

845 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula	Score	С	н	0	
287.0567	46.80	287.0556	1.1	4.0	10.5	C15 H11 O6	1	15	11	6	
449.1092	50.07	449.1084	0.8	1.8	11.5	C21 H21 O11	1	21	21	11	
611.1613	22.67	611.1612	0.1	0.1	12.5	C27 H31 O16	1	27	31	16	
757.2178	100.00	757.2191	-1.3	-1.7	13.5	C33 H41 O20	1	33	41	20	
758.2225	39.19	758.2269	-4.4	-5.9	13.0	C33 H42 O20	1	33	42	20	

MICROMASS[®] MS TECHNOLOGIES

_ 8 ×

Conclusions

Mass Spectrometry Systems

Metabonomics

Vaters

- Simple reversed-phase LC/MS system allowed separation of the control from dosed samples using multi-variant analysis.
- m/z of analytes responsible for the PCA separation were identified.
- Analytes responsible for PCA separation were identified by LC/MS/MS and Q-TOF
- 'Focussed' Metabolomics
 - Selective and sensitive (+/- 20mDa window) tool for screening for glycosylated metabolites in complex extracts
 - Fast screening method for differentially produced glycosides in control and transgenic plants, containing MS and MS/MS information from one single chromatographic run
 - Exact mass MS and MS/MS (<5ppm RMS) provided information on the putative metabolites and their aglycone fragments

