"An LC/MS Interface for Off-line Deposition of Capillary Liquid Chromatography Separations onto MALDI Target Plates"

<u>Jeffrey W. Finch</u>, Daniel B. Wall, Wieben Chen, Scott J. Berger, and Steven A. Cohen

> Desoprtion 2002 Conference September 4, 2002

Outline

1. Introduction

- a. Peptide Mass Fingerprinting (PMF) by MALDI
- b. Why interface LC to MALDI?
- 2. The LC-MALDI prep sample deposition module
- 3. MALDI TOF
- 4. MALDI (Q-Tof) MS/MS
- 5. Long-term stability of separations deposited on matrix pre-coated targets
- 6. Conclusions and future directions

Proteins to Peptides to MS

- Matrix Assisted Laser Desorption Ionization (MALDI) mass spectrometry
- Current technology allows measurements on biopolymers (peptides, proteins, antibodies, DNA, enzymes)
- Easy to use
- Sensitive (subfemtomole detection of peptides)
- Peptide mass mapping (or "fingerprinting") for Protein Identification
 - 1D gel spots
 - 2D gel spots
- Major requirement: samples must be relatively "clean"
 - Salts, buffers, detergents, etc. must be removed, or "diluted out", otherwise ion signals of biomolecules are suppressed

MS Tools: MALDI Matrix-Assisted Laser Desorption Ionization

target plate

MALDI Sample Preparation

Protein digest samples, analyzed directly or from gel bands or spots typically require sample clean up with a Zip Tip[™] or other method to remove salts, buffers, etc. prior to MALDI analysis

ProteinLynx^{1%} Global SERVER enterprise edition utilises an advanced sample tracking system to automatically track the fate of a gel spot detected in POQuest^{1%} through to its identification with ProteinLynx^{1%} Global SERVER.

High throughput sample clean-up using 4x Zip-Tip reverse phase disposable tips and precision elution onto a M@LDI™ target plate

Issues with MALDI

- Sample clean-up method, such as a ZipTip[™] is typically required to remove salts, buffers, detergents, etc.
 - Limited sample volume and capacity
 - Sample losses (recovery < 50%, etc.)
 - Inability to tolerate high concentrations of salts, buffers, and detergents
- Difficulties in analyzing complex mixtures of proteins
 - Desorption/ionization suppression
 - Resolving peptides which are close in mass
- Shot-to-shot reproducibility

Off-line MALDI LC/MS: LC-MALDIprep Sample Deposition Module

Waters

Description of the LC-MALDIprep

- The LC-MALDIprep is a sample deposition module that serves as an interface between reversed-phase HPLC and MALDI mass spectrometry
- Uses a heated capillary nebulizer to desolvate column eluent and spray it onto a MALDI target pre-coated with matrix
- \blacksquare Compatible RP HPLC flow rate range from 5 to 40 $\mu\text{L/min}$

Waters

- Computer control software sets the velocity of the sample stage, the temperature of the nozzle and the collection pattern
- The module can initiate a series of sample collections based on remote inject-start signals
- This device is compatible with a wide range of HPLC and MALDI manufacturers

LC-MALDIprep Utilizes an Adhesive Target which is Pre-coated with Matrix

The pre-coated matrix targets are a "one time use" consumable item

Mounting the Target on the MALDI plate

1. Mounting

2. Assembled

➡ 3. LC-MALDIprep Plate Holder

JWF090402

LC-MALDIprep Target Assembly in Plate Holder

LC-MALDIprepTM Interface: Heated Capillary Nebulizer with X-Y Stage

LC-MALDIprepTM Software Deposition in Tracks

Waters

- D X Method1.LCMP - LC-MALDIprep Status and Configuration File Edit View Setup Operation Help 🗅 🚅 🔚 | X 🖻 💼 🎒 🕑 | 🗡 🎢 🗙 🔽 🔽 🦙 🧏 Method Running Method - Depositing Current Method: Method1.LCMP Run Time: 30.00 min Current Time: 26.5 mm 0.10 min Delay Time: 45.6 °C Current Temperature: Immediate Start Type: Nozzle Position X: 44.75 mm Deposition Type: Tracks Nozzle Position Y: 46.20 mm 2.00 mm/min Velocity: Position Status temperature sample Current Plate: 1 gradient deposition in 0 Temperature Offset (°C): Apply Temperature Status tracks Current Offset: 0.0 °C **Deviation From Gradient:** 0.0 °C. 57 54 51 48 45 42 Current Plate: 39 12 24 30 n. 6 18 - 36 Next Sample Track: 3 NUM Ready JWF090402

LC-MALDIprepTM Software Deposition in Spots

Method1.LCMP - LC-MALDIprep Status and Configuration File Edit View Setup Operation Help 🗅 🚅 🔚 👗 🖻 💼 🎒 🔿 🥢 💥 🥆 🦙 🐚 🤋 Method Running Method - Depositing Method1.LCMP Current Method: 20.00 min Run Time: Current Time: 16.05 min 0.10 min Delay Time: 46.6 °C Current Temperature: Start Type: Immediate 44.75 mm Nozzle Position X: Nozzle Position Y: Deposition Type: Spotting 64.75 mm Spot Time: 1.00 min Position Status sample temperature Temperature Offset (°C): 0 deposition in Apply gradient Temperature Status spots Current Offset: 0.0 °C Deviation From Gradient: 0.0 °C 57 54 51 $\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$ 48 $\circ \circ \circ \circ \circ \circ \circ \circ$ $\bullet \circ \circ \circ \circ \circ \circ \circ \circ$ 45 $\circ \circ \circ \circ \circ \circ \circ \circ$ • 42 Current Plate: 1 39 12 16 20 24 Ð 8 Next Sample Track: 3 Ready NUM. JWF090402

Waters

Scanning Electron Microscopy

Dried Droplet

Thin Layer

LC-MALDIprep

MALDI LC/MS: Typical Experimental Conditions

- Capillary HPLC
 - CapLC with 996 Photodiode array and micro flow cell
 - 0.300 x 150 mm Symmetry C₁₈ column (3.5 μm particle size, 100 angstrom pore)
 - 10 μL/min flow rate, Solvent A: H₂O w/ 0.1% TFA, Solvent B: acetonitrile w/ 0.1% TFA, 5% B to 50% B in 26 minutes
- LC-MALDIprep
 - Tracks: 2.5 mm/min stage speed
 - Spots: 0.5 min dwell time
 - Temperature gradient: 60 °C hold: 0-5 min, 60-45 °C 5-26 min
 - Drying gas pressure = 12 psi
- M@LDI R
 - MassLynx 4.0 "Striper" program to control stage and acquire data (tracks)
 - Data reduction program: LC/MS trace ⇒ mass list ⇒ DB search

The Base Peak Intensity Chromatogram from LC/MALDI-TOF/MS Analysis of an Apomyoglobin Tryptic Digest Separation

Sample for Comparing LC-MALDIprep vs. ZipTip & Spotting

Tryptic digest of high abundance protein in the presence of low abundance proteins

- Alcohol Dehdrogenase (1250 fmol)
- Actin (10 fmol)
- Myoglobin (10 fmol)
- Cytochrome c (10 fmol)

Compare detection of tryptic peptides and protein sequence coverage of a capillary LC/MS MALDI separation vs. ZipTipTM & spotting

MALDI LC/MS of 4 Protein Tryptic Digest

CapLC with Waters Symmetry C18 .300 x 150 mm column

 $H_2O/Acetonitrile gradient with 0.1\% TFA$

Comparison of Mass Spectral S/N for Tryptic Peptides from Actin (10 fmol) in the Four Protein Digest

LC-MALDIprep versus ZipTipTM and Spot

Waters

Peptide Mass Mapping of a Four Protein Digest Mixture: LC-MALDI vs. ZipTip [™]

Waters

2D in-gel digest of Yeast Cytosolic Proteins comparison of direct, ZipTipTM, and LC-MALDIprepTM analysis

- 1. Detect and match peptides which are similar in mass
- 2. Greater number of peptides detected and matched using MALDI LC/MS

	ENO2_YEAST								
	Raw	ZT	LCMP	[M+H]+	Start	End	Sequence	Modifications	
		Y	Y	1288.690	346	357	(K) VNQIGTLSESIK (A)		
	Y	Y		1373.620	243	254	(K) IGLDCASSEFFK (D)		
Π	Y	Y	Y	1414.788	105	119	(K) LGANAILGVSMAAAR (A)		
			Y	1416.711	15	27	(R) GNPTVEVELTTEK (G)		
	Y	Y	Y	1430.760	105	119	(K) LGANAILGVSMAAAR (A)	Oxidation	
		Y	Y	1444.656	423	435	(K) AVYAGENFHHGDK (L)		
		Y	Y	1470.664	258	269	(K) YDLDFKNPESDK (S)		
	Y	Y		1497.778	126	138	(K) NVPLYQHLADLSK (S)		
	Y	Y	Y	1557.724	423	436	(K) AVYAGENFHHGDKL (-)		
Π	Y	Y	Y	1578.770	88	102	(K)AVDDFLLSLDGTANK(S)		
			Y	1600.771	241	254	(K)VKIGLDCASSEFFK(D)		
			Y	1645.900	103	119	(K) SKLGANAILGVSMAAAR (A)	Oxidation	
			Y	1669.883	409	422	(K) LNQLLRIEEELGDK (A)		
			Y	1793.905	88	104	(K) AVDDFLLSLDGTANKSK(L)		
	Y	Y	Y	1821.922	375	391	(R) SGETEDTFIADLVVGLR(T)		
		Y	Y	1840.893	32	49	(R) SIVPSGASTGVHEALEMR (D)		
	Y	Y	Y	1846.848	358	374	(K) AAQDSFAANWGVMVSHR (S)		
Π	Y	Y	Y	1854.967	312	329	(K) TAGIQIVADDLTVTNPAR (I)		
			Y	1856.898	32	49	(R) SIVPSGASTGVHEALEMR (D)	Oxidation	
			Y	1925.924	272	287	(K)WLTGVELADMYHSLMK(R)	Oxidation	
	Y		Y	1960.979	60	78	(K) GVMNAVNNVNNVIAAAFVK (A)	Oxidation	
			Y	1972.013	105	125	(K) LGANAILGVSMAAARAAAAEK (N)	Oxidation	
			Y	2066.010	272	288	(K)WLTGVELADMYHSLMKR(Y)	Oxidation	
			Y	2300.158	28	49	(K) GVFRSIVPSGASTGVHEALEMR (D)		
		Y	Y	2328.098	32	53	(R) SIVPSGASTGVHEALEMRDEDK(S)		
		Y	Y	2344.079	32	53	(R) SIVPSGASTGVHEALEMRDEDK(S)	Oxidation	
	Y			2828.295	289	311	(R) YPIVSIEDPFAEDDWEAWSHFFK (T)		
	Y			2984.432	288	311	(K) RYPIVSIEDPFAEDDWEAWSHFFK (T)		

MALDI LC/MS with Internal Lockmass 1 pmol BSA Digest

0.05 pmol/ μ L glufib lockmass solution co-infused post-column at 2 μ L/min

Waters

MALDI LC/MS Results for BSA Digest with Glufib Internal Lockmass

1. 18/34 matches (52%).

Acc. #: P02769 Species: BOVIN Name: Serum albumin precursor (Allergen Bos d 6) Index: 78059 MW: 69294 Da pl: 5.8

m/z	MH⁺	Delta	Modificati	Start	End	Missed	Database
Submitted	Matched	ppm	ons	Start	LIIG	Cleavages	Sequence
1249.6196	1249.6217	-1.7		35	44	1	(R) FKDLGEEHFK (G)
1305.7151	1305.7167	-1.2		402	412	0	<u>(K) HLVDEPQNLIK (Q)</u>
1405.7047	1405.7183	-9.7	1Met-ox	198	209	1	(K)GACLLPKIETMR(E)
1420.6697	1420.6782	-6		89	100	0	(K) SLHTLFGDELCK (V)
1439.8094	1439.8123	-2		360	371	1	(R) RHPEYAVSVLLR (L)
1444.6251	1444.6266	-1		286	297	0	(K) YICDNQDTISSK (L)
1465.5599	1465.5575	1.6		76	88	0	(K) TCVADESHAGCEK (S)
1465.5604	1465.5575	2		76	88	0	(K) TCVADESHAGCEK (S)
1479.7941	1479.7960	-1.3		421	433	0	(K) LGEYGFQNALIVR (Y)
1504.5806	1504.5824	-1.2		375	386	0	(K) EYEATLEECCAK (D)
1534.7512	1534.7497	0.98		298	309	1	(K) LKECCDKPLLEK (S)
1567.7157	1567.7433	-18		347	359	0	(K) DAFLGSFLYEYSR (R)
1639.9407	1639.9383	1.5		437	451	1	(R) KVPQVSTPTLVEVSR (S)
1881.9087	1881.9057	1.6		508	523	0	(R) RPCFSALTPDETYVPK (A)
1908.9009	1908.9053	-2.3		529	544	0	(K) LFTFHADICTLPDTEK (Q)
1930.7540	1930.7509	1.6		581	597	1	(K) CCAADDKEACFAVEGPK (L)
2020.9573	2020.9537	1.8		139	155	1	(K) LKPDPNTLCDEFKADEK (K)
2116.8430	2116.8374	2.6		264	280	1	(K) VHKECCHGDLLECADDR (A)

avg. mass error = 3.2 ppm

teomics."

MS/MS with MALDI Q-Tof

LC-MALDI QTOF Analysis of a Global Digest of Yeast Ribosomal Proteins

200

JWF090402

1200

1000

800

- Mixture of angiotensin I (100 fmol/μL), renin substrate (10 fmol/μL), and ACTH (1 pmol/μL) in 30% acetonitrile with 0.1% TFA
- Infused at 10 μ L/min, deposited onto tracks with stage speed =10 mm/min
- Drying gas temperature = 55 °C
- 1.6 mm segment of track analyzed at various time points
- Target stored in dark
- Three different storage conditions
 - 4 °C in desiccator
 - Room temperature in desiccator
 - Room temperature

Analyte Stability in Matrix Over Time Acquired at Day 1 and Day 87

Target stored at 4 °C in desiccator

Analyte Stability in Matrix Over Time Signal-to-noise Ratios for Renin Substrate (10fmol/µL)

Target stored at 4 °C in desiccator

Waters

Analyte Stability in Matrix Over Time S/N of Renin Substrate

Target stored at 4 °C in desiccator

LC-MALDI Summary

- Collection of analyte from wide range of flow rates: capillary and micro bore (5 to 40 uL/min)
- Robust
- Low femtomole sensitivity
- LC-MALDI reduces ion suppression effects and interference between peptides of similar m/z
- Improved peptide mass fingerprinting results versus ZipTip[™] and spot method
- LC separation significantly increases the numbers of peptides sequenced by MALDI MS/MS (QTOF, TOF/TOF, API-MALDI Ion Trap)
- Stable, long-term storage of collected separations that can be analyzed months later
- Work is in progress for interfacing to nanoLC columns

Acknowledgements

Life Sciences Technology R&D

- Bob Pfeifer
- Bob Karol

Life Sciences Chemistry

John Gebler

Micromass UK

- Jim Langridge
- Jeff Brown
- Dominic Gostick
- Richard Tyldesley
- Jeremy Batt

Advance Separations

Bruce Compton

Chemistry Operations

Bruce Smith

