Waters

Evaluation of Second Generation Hybrid Organic/Inorganic Particles: New Reversed-Phase Materials that Excel Under Extremes

Kevin Wyndham, John O'Gara, Nicole Lawrence, Ken Glose, Pamela Iraneta, Bonnie Alden, Cheryl Boissel, and Thomas WalterWaters Corporation, 34 Maple Street, Milford, MA 01757-3100, USAContact: kwyndham@waters.com

OVERVIEW

Since the launch of our first generation Methyl Hybrid particle¹ we have continued to explore the use of hybrid organic/inorganic particles as reversed-phase HPLC packing materials. We recently developed the use of bridged alkoxysilanes as particle precursors. Novel Bridged Hybrid materials containing a 4:1 molar ratio of inorganic (SiO₂) to organic substituent groups (SiO_{1.5}CH₂CH₂SiO_{1.5}), have been shown to be excellent base-particles for the preparation of efficient and chemically resilient reversed-phase packing materials.

In this report we present the synthesis and bonding process for three different Bridged Hybrids (having surface areas varying between 145 and 281 m²/g). We will also compare the chemical and chromatographic performance of these 5 μ m packing materials with Methyl Hybrid and Silica materials, and describe the implications of hybrid particle technology for improved RP-HPLC applications.

Figure 2. Chromatographic comparison of similarly C₁₈-bonded 5 μm particles. Column: 4.6 x 150mm. Mobile Phase: 60/40 methanol / 20 mM KH₂PO₄ / K₂HPO₄, pH 7.00, 1.4 mL/min, 23.4±0.1°C.

- Chromatographic comparison tests performed using a standard set of test analytes.³
- Hybrid columns have similar efficiencies and elution orders as Silica.

Figure 4. Loss of original efficiency (5 sigma method) for acenaphthene on C_{18} -bonded Bridged Hybrids and Silica. For unbonded Bridged Hybrid the efficiency loss of the void marker, uracil, was reported.

- Silica C_{18} -columns fail within 15-17 hours.
- C₁₈-bonded and Unbonded Bridged Hybrid columns are still good after 135 hours.
- Drastic increase in high pH stability attributed to chemical stability of the base hybrid particle.
- Bridged Hybrid materials allow for an order of magnitude increase in high pH column stability.

COLUMN STABILITY WITH NaOH, 50°C

UNBONDED PARTICLE SYNTHESIS

- Multi-step process using hybrid precursors, prepared through a Sol-Gel process.²
- Yields highly spherical porous particles.
- Can control surface area by modifying synthetic process (Table 1).

BONDED PARTICLE SYNTHESIS

	Brid	ged Hy	Methyl	Silion		
	Α	В	С	Hybrid	Silica	
Unbonded %C	6.2	6.4	6.3	6.9	0.0	
Surface Area (m²/g)	145	189	281	182	340	
Pore Volume (cc/g)	0.72	0.76	0.84	0.72	0.85	
Pore Diameter (Å)	185	148	109	137	100	
C ₁₈ Coverage (µmol/m²)	3.3	3.3	3.2	2.5	3.3	

- Hybrid columns show reduced retention for analytes due to lower surface area and reduced concentration of surface silanol groups.
- Peaks obtained for bases (propranolol, amitriptyline) are sharper and more symmetric for hybrid columns.
- Higher surface area Bridged Hybrids show greater retentivity.

VAN DEEMTER CURVES

Figure 3. Van Deemter analysis of C_{18} -bonded 5 μ m particles.

- Bridged Hybrid columns are very efficient and have similar Van Deemter curves to Silica.
- Improved mass transfer over Methyl Hybrids.

COLUMN STABILITY AT pH 10, 50°C

- Generally accepted failure mechanism for silica columns at high pH is base-catalyzed particle dissolution.
- · Accelerated alkaline pH aging test developed to

- Further explored column stability of Bridged Hybrids using NaOH mobile phases at 50°C.
- Experiment A:
- Experiment B:
- Efficiency lifetime is inversely proportional to surface area. Efficiency lifetime is inversely
 - proportional to [NaOH]

CONCLUSIONS

Chromatographic properties of Bridged Hybrid C_{18} columns were evaluated:

- Similar performance as C₁₈-silica columns
- Comparable selectivity and dramatically reduced peak tailing factors for basic analytes.
- Significant improvement in mass transfer for the second generation hybrid columns

Bridged Hybrid columns show great performance at elevated pH.

- Stable toward high pH mobile phases at 50°C
- Can use NaOH as a mobile phase additive
- Column stability increases with decreasing surface area.

		v	-

10.0	17.3	ZI.4	15.0	19.0

compare chemical stability of different columns.¹

- Table 1.
 Characterization Data for C₁₈-Bonded Particles
- Surface derivitization of 5 µm materials by reaction with C₁₈H₃₇SiCl₃, endcapped with (CH₃)₃SiCl.
- Hybrid particles contain 6.2 6.9 %C before bonding
- Bridged Hybrid and Silica materials have 3.3 µmol/m² C₁₈-surface coverage
- Methyl Hybrids have lower coverage Lower surface silanol concentration

Test Protocols:

(4.6 x 150 mm columns, 50°C)

Challenge: 50 mM NEt₃ (pH 10, 2 mL/min, 60 min)

Wash Step: water (2 mL/min, 10 min), methanol (2 mL/min, 10 min)

Test: methanol/pH 7.00 K₂HPO₄ (65/35 v/v)

Repeat until a 50% loss in original efficiency

REFERENCES

Am. Lab. 1999, 31, 36.
 Patent Pending. PMSE Preprints 2002, 87, 274.
 LC-GC 1994, 12, 468.