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Synthetic oligonucleotides are used in m o
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We adjusted our HPLC purification conditions a nt 
retention, and an example of purification (0 f a
oligonucleotide can be seen in Figure 3.     

• An IP-RP-HPLC method was developed for the purification of dye-labeled 
oligonucleotides.   

• Purification of a 0.1 µmole synthesis can be routinely performed in a single injection. 
• Method was used for isolation of dually-labeled oligonucleotides synthesized in the 

“one-pot” approach.   
•  IP-RP-HPLC method was successfully utilized for the quality control of synthetic 

oligonucleotides. 
• Quality of synthetic oligonucleotides varies dramatically from synthesis to synthesis. 

HPLC System: Alliance® 2690 (Waters) 9
array detector 

Column:  XTerra® MS C18, 4.6 x 50 
Column temp.: 60 ºC  
Flow rate: 0.5 or 1.0 ml/min. 
HPLC Conditions: See figure captions 
Ion-pairing buffers: 100 mM triethylamm A)
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from the column with an acetonitrile gradient. Alternatively, 
hexafluoroisopropanol-triethylamine (HFIP-TEA) b
methanol gradient were us
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urification of a 0.1 µmole crude synthesis of a 25mer 
nucleotide labeled with 5’ HEX fluorescent dye. The 
 at two wavelengths; 260 nm (DNA absorbance) and 
f HEX dye). Comparison of 260 nm and 539 nm chro-
ich oligonucleotide failure sequences are dye-labeled 

Figure 4: RP-HPLC separation of a crude synthetic 36mer Taqman™ oligonucleo-
tide using real-time UV-VIS spectrum monitoring. Taqman™ probes are synthesized in 
a “one-pot” approach. This type of synthesis saves time and cost, however it yields 
a complicated mixture of failure products. The analysis is monitored at 260 nm 
(chromatogram on left); real-time UV-VIS spectra monitoring (spectra on right) was 
used to determine the time of fraction collection. Product was collected when the 
dually-lableled spectrum (pink trace) was detected.  
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Mobile phase A: 5% ACN and 95% 0.1M TEAA, pH 7; B: 40% ACN and 60% 0.1M TEAA, pH 7.  Gradient 
from 17.1% B (11% ACN) to 60% B (26% ACN) in 30 minutes, 0.5 ml/min.   
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