HPLC Determination Of Fungicide Residues In Fruit Juices Using Photo-Diode Array And Mass Spectrometric Detection

Jim Krol and Michael Young
Waters Corporation
July 2000

Structures of Common Fungicides Thiabendazole and Carbendazim

Systemic fungicide to control mold growth on fruits and vegetables; also used as a veterinary drug (nematocide)

Degradation of Benomyl to Carbendazim

Carbendazim

Oasis® MCX SPE Method A

- ★ For Basic Analytes in Citrus juices (6 cc cartridge)
- ★ This SPE procedure is mixed-mode cation-exchange extraction followed by reversed-phase cleanup Using a Single Cartridge
- ★ This protocol provides high recovery of basic compounds in matrices, such as orange juice, that contain high concentrations of interferences at high pH

Oasis® MCX SPE Method B

- ★For Basic Analytes in Apple and Grape Juices (6 cc cartridge)
- ★This SPE procedure is reverse -phase extraction followed by cationexchange cleanup
- ★Because the Oasis ® MCX sorbent is mixed mode, these sequential steps are performed
 - Using One Cartridge
- ★This protocol provides high recovery of basic compounds in matrices, such as grape juice, that contain high concentrations of acidic interferences

Oasis® MCX SPE Mixed-Mode Extraction and Clean-up of Juice Samples

- Provides sample enrichment
 - up to 100 fold concentration using 6 cc cartridge
- ★ Removes interferences
 - improved chromatography
 - provides longer column life
 - reduces MS sample matrix effects (enhancement/suppression)
 - reduces "fouling" of MS inlet cones

LC/PDA Determination of Fungicides **Chromatographic Conditions**

Analysis of Carbendazim & Thiabendazole Using PDA and MS Modified Chromatographic Conditions

Modified Chromatographic Conditions for Electrospray MS Detection

HPLC: Waters Alliance® System

Column: Waters XTerraTM MS C_{18} , 2.1 x 100 mm, 3.5 μ m

Mobile Phase: 80% 10 mM NH₄HCO₃ Buffer (pH 9)

pH Adjusted with either NH₄OH or HOAc /20% AcCN

Flow Rate: 200 μL/min; Split flow ~50/50 pre-Detector

Inj Volume: 5 µL

PDA: Scan 200 to 400 nm; Extracted @ 288 nm

MS Conditions

Instrument: Waters ZMD ZsprayTM Mass Detector

Interface: Positive Electrospray (ESI+)

Source heater: 125° C

Scan Function: Multiple Selected-Ion Recording (SIR)

SIR	Time			Cone	Dwell
Group	mins.	Compound	<u>Mass</u>	<u>Voltage</u>	<u>Time</u>
1 .	0-6.5	Carbendazim	192.1	25V	1.0 secs
2	6-15	Thiabendazole	202.0	35V	1.0 secs

Mass Spec Control and Processing Using Mass Lynx™

Choice of Mobile Phase pH and Buffer for Electrospray Mass Spectrometric Detection

- Ammonium acetate or formate, are the classic volatile buffers for MS detection
 - Natural pH about 7; may be adjusted with NH₄OH for alkaline pH but little buffering capacity
- ★ Alkaline mobile phases absorb CO₂ from the atmosphere
 - Changes may occur in pH and composition
- ★ Ammonium Bicarbonate has a natural pH of 8.4
 - → Highly volatile; decomposes at 60°C, good buffering capacity to pH 10
 - → Minimizes CO₂ absorption

Peak Tailing vs Mobile Phase pH Xterra Using NH₄HCO₃

Chemistry of Ammonium Bicarbonate

In Solution

$$NH_4HCO_3 + H_2O \longrightarrow NH_4^+ + HCO_3^- + H_2O$$

$$pK_a of NH_4^+ \longrightarrow NH_3 + H^+ is 9.24$$

pKa of $HCO_3 + H^+ \longrightarrow H_2CO_3$ is 6.4 pKa of $HCO_3^- \longrightarrow H^+ + CO_3^{-2}$ is 10.3

Buffering Range 6.4 to 10.3 pH of a 10 mM Solution is 8 to 8.2

At the MS Interface
$$NH_4HCO_3 \xrightarrow{>60^{\circ}C} NH_3 \uparrow + CO_2 \uparrow + H_2O$$

Choice of Buffer Type Effect on Response

Mass Spec Linearity; 25-500 ppb Using Ammonium Bicarbonate

MS Reproducibility and Detection Limits

PDA vs MS Quantitation Comparison

Carbendazim (ng/mL, ppb)

Sample*	PDA	MS
Apple Cider 1	376.6	392.3
Apple Cider 2	379.6	381.7
Apple Cider 3	387.4	391.3
Apple Cider 4	394.5	399.9
Apple Cider 5	388.1	406.7

Thiabendazole (ng/mL, ppb)

Apple Cider 1	438.9	429.8
Apple Cider 2	425.0	419.5
Apple Cider 3	425.8	428.1
Apple Cider 4	455.9	443.9
Apple Cider 5	442.4	442.0

^{*} Represents a 10X Concentration Factor After Oasis MCX SPE Method B

PDA vs MS Quantitation Comparison

Single Wavelength Quantitation Risk of Incorrect Identification

Based on Retention time, peak 2 may be thiabendazole

PDA Peak Purity and Peak Match Results indicate Peak 2 is Not Thiabendazole

Questionable Results?

PDA Peak Results

	Analyte				Purity Threshold	PDA Match Threshold	Amount	Units
1	Carbendazim	5.689	2625	23.328	9.1 <i>77</i>		45.79	ppb
2	Thiabendazole	7.596	18330	1.050	0.402		170.58	ppb

© 2000 Waters Corp.

Single Wavelength Quantitation Risk of Incorrect Identification

PDA Library Matching Indicates Different Spectra

Value of PDA and MS Qualitative and Quantitative Confirmation

PDA vs MS Quantitation Comparison Chromatographic and Integration Interference

PDA Required Manual Integration for Reproducible Results

ng/mL, ppb	PDA	Mass Spec
Carbendazim	200.7	209.0
Thiabendazole	215.0	205.7

MS Confirms PDA Results

Recovery of Fungicides From Juices Summary of Oasis® MCX Extraction Data

	PI	DA	Mass Spec		
	Carbendazim	<u>Thiabendazole</u>	<u>Carbendazim</u>	<u>Thiabendazole</u>	
Orange Juice	89% (2%RSD)	91% (3% RSD)	104% (1% RSD)	91% (2% RSD)	
	87% (2% RSD)	98% (3% RSD)	89% (3% RSD)	99% (3% RSD)	
Grape Juice	Inter	ference	93% (9% RSD)	100% (6% RSD)	

Spike level: 50 ng/mL for apple and orange, 20 ng/mL for grape

Summary

- ★ A validated chromatographic method designed for a specific sample matrix, may not be appropriate for a different matrix. Apples vs Oranges vs Grapes
- ★ There is a risk of incorrect analyte identification and quantitation when using only a single wavelength UV detection
- Use of PDA peak purity and library spectra matching aids in analyte identification and the possibility of biased quantitation
- Mass Spectrometry's SIR specificity confirms analyte identification and quantitation

Summary

- Oasis® MCX SPE procedures developed for LC/UV analysis were successfully employed for LC/MS analysis
- ★ LC/UV methods may require modifications for use with Mass Spec detection; eliminate non-volatile buffers
- Ammonium bicarbonate is an excellent buffer choice for alkaline pH (8 to 10) work
- Can do positive electrospray at alkaline pH