A Combinatorial Chemistry Library Analysis by LC/MS

P. Bourbon, Waters European Headquarters, France F. Ploeg, Waters Corporation, The Netherlands W. Van Scheppingen, Specs and BioSpecs, The Netherlands B. Kenney, Waters Corporation, USA

Goals

- Fast check of compound confirmation by LC/UV/MS
- Minimize carryover
- Confirmation of quality of MS spectra
- Estimation of impurities

Sample Features

- 96 well plate containing 2 mL test tubes
- 2 µg/uL in DMSO
- Highly differentiated compounds
- Sample name and expected molecular weight list imported directly from spreadsheet

Analytical Conditions

- LC/MS
 - 2790 Separations Module
 - Fast Gradient
 - A = 0.1% HCOOH B= CH₃CN + 0.1% HCOOH
 - 95/5 to 0/100 in 1.5 minutes at 1.0 mL/min
 - Rapid equilibration with just-in-time gradient
 - Sample Injection
 - 2 µL, with 2 µL air gaps
 - Wash = $90/10 \text{ MeOH/H}_2\text{O}$, (two cycles)
 - XTerra™ C₁₈ MS Column
 - 3.5 µm, 2.1 x 50 mm
 - Temperature = 60 °C
 - 996 Photodiode Array Detector
 - Scan from 210 to 400 nm
 - ZMD Mass Spectrometer
 - Scan ESI+ from 200 to 800 amu in 1 sec in centroid mode
 - Cone voltage = 40 volts
 - Split 1/5
 - OpenLynx™ Software Report
 - 3.5 min, Total Cycle Time

Chromatogram and Spectra

- Why perform a separation?
 - Eliminate potential ion suppression from DMSO
 - Eliminate potential co-elution with DMSO
 - Enable impurity spectra investigation
 - Enable estimation of purity

Injection Carryover

- Why be concerned?
 - Carryover risks confusion in a series of similar compounds
 - 4 μg in DMSO were injected on-column

% Carryover (MS)	% of runs
0.00%	54.00%
< 0.1%	63.00%
< 0.25%	84.00%
< 0.5 %	96.00%

The carry over is calculated from MS chromatograms

A Combinatorial Chemistry Library Analysis by LC/MS

SPECS and BioSPECS

P. Bourbon, Waters European Headquarters, France F. Ploeg, Waters Corporation, The Netherlands W. Van Scheppingen, Specs and BioSpecs, The Netherlands B. Kenney, Waters Corporation, USA

OpenLynx[™] Compound Presence Decision Criteria

Why Four Red Wells?

Conclusions

- Fast check of compound confirmation by LC/UV/MS
 - 3.5 min. cycle time
- Minimize carryover
 - Carryover in LC/MS < 1.0% for all analyses
- Confirmation of quality of MS spectra
 - Separation removes DMSO from analytes
 - Noise differentiation and confirmation thresholds provide confidence in compound presence/absence
- Estimation of impurities
 - Impurity chromatogram/spectra available for examination