Evaluation of the Stability of New Organic/Inorganic Hybrid Reversed-Phase HPLC Packings

- B. Alden, J. Carmody, J. Grassi, C. Gendreau,
- P. Iraneta, T. Walter

Waters Corporation, 34 Maple Street, Milford, MA 01757-3696

Abstract:

We have recently developed a new family of reversed-phase HPLC packings based on organic/inorganic hybrid particles. To evaluate the hydrolytic stability of these packings relative to state-of-the-art C₁₈-silicas, we have used several different test protocols. These protocols include chromatographic tests using mobile phases containing buffers that range from pH 1.2 to 11.5, as well as temperatures up to 60 °C. The results show that the packings based on hybrid particles exhibit exceptional stability in alkaline mobile phases and excellent stability in acidic mobile phases.

Hybrid Technology Particle

- Hybrid Organic/Inorganic materials contain both organic and inorganic components
- •The hybrid particles described here were synthesized from Si(OEt)₄ and CH₃Si(OEt)₃:

- Hybrid particles combine:
 - •efficiency and mechanical strength of silica
 - extended pH range and absence of base tailing of organic polymers

XTerra[™] Bonded Phases

Bonded XTerra™ Particle

- XTerra[™] bonded phases are based on the hybrid particles shown in the previous slide
- ATerra[™] RP₁₈
 - Embedded carbamate C₁₈ phase with a trimethylsilyl endcap
 - 14.95% C
 - 2.32 µmol/m²
- ATerra[™] MS C₁₈
 - Trifunctional C₁₈ phase with a trimethylsilyl endcap
 - 15.45% C
 - 2.22 µmol/m²

pH 10 Et₃N/ 50 °C Accelerated Test Protocol

Accelerated Test Procedure:

- 1. **Equilibrate**: 45 min, 1 mL/min, test mobile phase
- Test: Mobile Phase: pH 7.0 K₂HPO₄ / MeOH 35:65 v/v, Flow Rate: 1 mL/min, Detection wavelength 254 nm
- 3. **Challenge**: 50 mM N(CH₂CH₃)₃·HCl buffer pH 10.0

Time: 60 min, Flow Rate: 2 mL/min

- 4. Purge: 10 min at 2 mL/min with water10 min at 2 mL/min with methanol
- 5. **Cycle** back to step 1 and repeat until column fails

The column (4.6x150mm) is maintained at 50°C throughout the entire test.

Under these aggressive conditions XTerra[™] columns lasted significantly longer than state-of-the-art C₁₈-silica columns.

pH 10 Et₃N/50 °C Accelerated Test Chromatograms

Typical Chromatograms for C₁₈-Silica S

Typical Results - % of Initial Efficiency for Acenaphthene Reproducibility for 3 C₁₈-Silica S Columns

pH 10 Et₃N/ 50 °C Accelerated Test Efficiency *vs.* Time Curves

% Initial N (5 sigma) for Acenaphthene

pH 7 Na₂HPO₄/60 °C Accelerated Test Protocol

Accelerated Test Procedure:

- 1. Equilibrate: 60 min, 1.0 mL/min, test mobile phase 1
- Test Probe Mobile Phase1: MeCN/H₂O (percentages vary with packing material), Flow rate: 1.0 mL/min, Detection wavelength: 254 nm, probes: uracil, acenaphthene
- 3. Equilibrate: 60 min, 1.5 mL/min, test mobile phase 2
- 4. Test Probe Mobile Phase2: 10 mM pH 7 Na₂HPO₄/MeCN (percentages vary with packing material), Flow rate: 1.5 mL/min, Detection wavelength: 254 nm, probes: tricyclic antidepressants
- 5. Purge: 20 min at 1 mL/min with water
 10 min at 1 mL/min with acetonitrile
 20 min at 1 mL/min with H₂O/MeCN, 90:10
- 6. Column Aging Mobile Phase: 50 mM pH 7 Na₂HPO₄/MeCN 80:20, Flow Rate: 1.0 mL/min Time: 60, 120, 180, 240, 240... min
- 7. **Purge:** 20 min at 1 mL/min with water 10 min at 1 mL/min with acetonitrile
- 8. Cycle back to step 1 and repeat until column fails.

The column (4.6x150mm) is maintained at 60°C throughout the entire test.

pH 7 Na₂HPO₄/60 °C Accelerated Test Chromatograms

pH 7 Na₂HPO₄/60 °C Accelerated Test Efficiency *vs.* Time Curves

% of Initial Acenaphthene Efficiency (5 sigma)

Column Volumes of Phosphate Buffer

– Using aggressive phosphate buffers at high temperature, bonded hybrid packings resisted dissolution which leads to the premature failure of C_{18} -silica columns.

pH 11.5 Lifetime Test Protocol

pH 11.5 Lifetime HPLC Conditions:

- Column: XTerra[™] RP₁₈, 5µm,
 4.6x150mm with an XTerra[™] RP₁₈, 5µm,
 3.9x20mm guard column
- Mobile phase: 50 mM Pyrrolidine- HCl pH 11.5 / MeCN, 50:50
- Column Temperature: 30 °C
- Flow Rate : 1 mL/min.
- Detector: 215 nm
- Injection volume : 2 μL

pH 11.5 Lifetime Test Chromatograms

 Hybrid technology extended the high pH column lifetime of XTerra[™] packing to10 times longer than C18-Silica S.

pH 11.5 Lifetime Test Efficiency *vs.* Time Curves

Low pH Stability of Hybrid Particle

Particle % C vs Time Exposed to 1 M HCl at 95°C

-The low pH stability of the methylsiloxane unit in the hybrid particle was tested using strongly acidic high temperature conditions. No loss of the methylsiloxane units was detected.

pH 1.5 TFA/50 °C Accelerated Test Protocol

Accelerated Test Procedure:

- 1. **Test**: MeOH/ 20 mM K₂HPO₄ pH 7.0, 65:35 v/v, 25 °C, Flow rate 1.0 mL/min
- 2. **Purge:** 1% trifluoroacetic acid (TFA) pH 1.2, Flow rate: 2 mL/min
 - 12 minutes for 4.6x75mm columns
 - 24 minutes for 4.6x150mm columns
- 1. Challenge: 1% trifluoroacetic acid pH 1.2 at 50 °C (no flow)
- 2. Purge:
 - water at 2.0 mL/min for 10 min
 - methanol at 2.0 mL/min for 10 min
- 3. **Test**: MeOH/ 20 mM K₂HPO₄ pH 7.0, 65:35 v/v, 25 °C, Flow rate 1.0 mL/min
- Cycle back to step 1 and repeat until column fails.

pH 1.5 TFA/50 °C Accelerated Test Retention *vs.* Time Curves

% Initial Retention Factor (k) for Acenaphthene vs Time Exposed to pH 1.2/50 °C

 Loss of retention is due to the hydrolytic loss of bonded phase.

