
software package and has been employed in

this form to solve many problems in

biochemistry. 

Here, the benefits of MaxEnt over alternative

methods of processing electrospray mass

spectra, particularly from biopolymer

mixtures, are first summarised. This summary

is followed by a bibliography of over 50

papers in which MaxEnt has been employed

to deconvolute the electrospray mass spectra

from a wide range of biological samples.

MaxEnt: An Advanced Maximum Entropy Based Tool for Disentangling the
Electrospray Mass Spectra from Biopolymer Mixtures. 
A Brief Description and Bibliography.
Authors: B.N. Green and R.W.A. Oliver
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Introduction

The electrospray mass spectrum from a

biopolymer (e.g. protein, glycoprotein, or

oligonucleotide) is composed of a series of

multiply-charged ions on the mass-to-charge

ratio (m/z) scale. On this scale, the positions

of the multiply-charged positive ions from a

single protein or glycoprotein of molecular

mass Mr are given by m/z = (Mr+nH)/n,

where H is the mass of the proton and n is an

integer in a series of consecutive integers.

Typically, a 20 kDa protein generates a series

containing some 10-20 multiply-charged

molecular ion peaks. It follows that the

electrospray mass spectrum from a mixture of

proteins can be extremely complex, since

each protein in the mixture will give rise to its

own characteristic series of such peaks.

Simplification of the raw data is thus

mandatory before interpretation of the

complex spectrum can be attempted. If each

series from a given component of the mixture

could be condensed into a single peak on a

true molecular mass scale, the amount of data

to be considered would be significantly

reduced and the process of interpretation

could begin.

Various methods have been described in the

literature for carrying out this deconvolution

procedure and their drawbacks discussed(11).

In 1991, an advanced maximum entropy

(MaxEnt) based procedure was developed by

J. Skilling of MaxEnt Solutions Ltd,

Cambridge, UK(1, 3). Subsequently, this

MemSys5 maximum entropy algorithm was

incorporated into the Micromass MassLynx



The Benefits of MaxEnt

MaxEnt has the following distinct advantages

over alternative methods of processing

multiply-charged electrospray data:-

1. MaxEnt automatically finds the molecular

masses of the components present in a

mixture.

With a completely unknown sample, a first

MaxEnt analysis or zero-charge survey is

made over a deliberately chosen wide

molecular mass range in order to localise the

mass range or ranges for a second definitive

analysis. MaxEnt is computationally intensive

and the processing time increases with the

number of data points (channels) in the zero-

charge (output) spectrum. Consequently,

when making a wide mass range survey, it is

usual to employ a relatively coarse mass scale

(5-10 Da/channel) to keep the processing time

to within 5 minutes or so. However, when this

is done, the molecular weights are not

calculated with full accuracy. Therefore, once

the approximate masses of the components

have been found from the survey, a second

definitive run is made over a narrower output

mass range (or ranges) using a finer mass

scale (0.5-1 Da/channel) in order to obtain

fully accurate molecular mass values.

An example of the latter is illustrated in Fig.1.

Here, the original spectrum from the mixture

of the proteins and glycoproteins obtained by

denaturing the extracellular haemoglobin from

the earthworm, Lumbricus terrestris(26, 32) is

shown in Fig. 1A. The native Hb has a

molecular weight of 3.5 million and is

composed of some 15 different proteins and

glycoproteins ranging in mass from 16 to 

53 kDa. The MaxEnt deconvoluted spectrum

shown in Fig. 1B, where each component in

the mixture is represented as a single peak on

a true molecular mass scale, is much easier to

interpret than the original data. These data

were acquired on a Micromass Quattro II.

2. MaxEnt enhances the resolution i.e.

improves the ability to separate and

accurately measure the molecular masses

of otherwise unresolved components.

The arguments for needing resolution

enhancement in the analysis of haemoglobins

by electrospray mass spectrometry have been

described in an excellent review by

Shackleton et al.(8). In essence, there is a basic

limit to peak width, and hence resolution,

which is determined by the isotopic

distribution of the elements in the protein

molecule. For the haemoglobin chains (15-16

kDa), this basic width at half peak height is 8

Da. With state-of-the-art quadrupole

analysers, the instrumental contribution to

peak width is small for the haemoglobin

chains, and increases the overall width to a

little less than 10 Da, thus giving rise to the

Figure 1. Electrospray mass spectra of the globins and subunits from the haemoglobin of the earthworm

Lumbricus terrestris analysed in denaturing solvent. A, the original m/z spectrum and B, the MaxEnt

processed spectrum on a true molecular mass scale. d are monomer globins and T glycosylated disulphide

bonded trimers. Linker subunits (L), of which L1 is also glycosylated, are necessary for assembly of the

various proteins into the native haemoglobin of molecular mass 3.5 million. In Fig. 1A, the figures after the

commas indicate the number of charges on the ions, e.g. d1,13 means component d1 with 13 positive

charges. (Copyright 1996 American Chemical Society (32)).



practical limit for resolving two haemoglobin

chains, without deconvolution, of 12 Da. The

Shackleton review (pp 148-151) shows how

MaxEnt extends the practical limit for

resolving and accurately measuring the

masses of two haemoglobin chains from 12 to

6 Da.

Fig. 2 shows an example of resolution

enhancement by MaxEnt from the analysis of

a heterozygote for the α-chain variant Le

Lamentin, [α20 (His➝Gln)]. Here, the variant

α-chain (Mr=15117.4) is not resolved from

the normal α-chain (Mr=15126.4) in the

original data since the mass difference is only

9 Da (Fig. 2A and inset). After deconvolution

by MaxEnt (Fig. 2B), the two α-chains are

clearly resolved allowing their mass

difference to be accurately determined.

3. MaxEnt improves the signal-to-noise ratio.

MaxEnt has the power to extract useful zero-

charge spectra from noisy multiply-charged

m/z data.

Although the majority of publications in the

Bibliography involve the analysis of proteins,

it should be stressed that MaxEnt is not

restricted to processing biopolymer data but

can be used to process any data containing

two or more ions from the same molecule,

provided they carry consecutive numbers of

charges. Fig. 3 shows the result of employing

MaxEnt to produce the isotopically resolved

zero-charge spectrum of a poly-sulphonated

compound (Mr=1815) from partly resolved

multiply-charged data. The original spectrum

(Fig. 3A and inset) shows predominantly an

ion with 6 negative charges together with less

intense ions having 5 and 4 charges. The

MaxEnt processed spectrum (Fig. 3B and

insets) shows the zero-charge spectrum with

the isotope peaks almost fully resolved.

Moreover, the isotope pattern closely

resembles the expected isotope pattern for this

molecule of elemental composition

C61H40N19O26S8Cl3.

Figure 2. Data from the blood of a heterozygote for the variant haemoglobin Le Lamentin, 

[α20 (His➝Gln)]. In the original m/z spectrum (Fig. 2A and inset), the variant and normal α-chains are not

resolved, whereas after processing by MaxEnt (Fig. 2B), they are clearly resolved to reveal their 9 Da mass

difference. These Quattro II data were produced from whole blood simply diluted 500 fold in 1:1

water:acetonitrile containing 0.2% formic acid.

Figure 3. Electrospray data from a poly-sulphonated compound of molecular mass 1815. A, the original m/z

spectrum and B, the zero charge spectrum produced by MaxEnt. Note that in the original data (Fig. 3A

inset), the peak with six negative charges is only partly isotopically resolved, whereas in the MaxEnt

spectrum, the isotope peaks are clearly resolved (Fig. 3B inset). Furthermore, the experimental isotope

pattern closely resembles the isotope pattern expected for this molecule.



The following is a Bibliography of published
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Discussion of Bibliography

The wide range and exact nature of the

biological mixtures analysed in which

MaxEnt procedures have been employed in

order to deconvolute their electrospray mass

spectra can be readily ascertained by a study

of the titles of the papers given in the

bibliography. If this information was not

given by the original authors of the paper then

it has been added to the title in square

brackets. At the present time, the most

common mixtures studied by this method are

those of various haemoglobins, possibly

because, as Shackleton and Witkowska

comment in paper 45, these proteins afford

“dream molecules” for the mass

spectrometrist. A study of the adjacent Index

of Journals shows that MaxEnt applications

have been published in a very wide range of

journals, some 27 in total, with the two most

popular journals being the two most important

biochemical journals, namely the Journal of

Biological Chemistry and the Biochemical

Journal.

Finally, a study of the country of origin of the

various papers forming the bibliography

showed that at present MaxEnt is most widely

used in the UK (39 papers) followed by

American laboratories (18 papers). This study

also showed that papers have been published

from laboratories in Australia (3 papers),

Belgium (2 papers), Denmark (3 papers),

France (4 papers), Japan (3 papers), Taiwan

(4 papers) and Spain (1 paper) and hence it

may be safely concluded that the MaxEnt

procedures have been adopted worldwide.
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