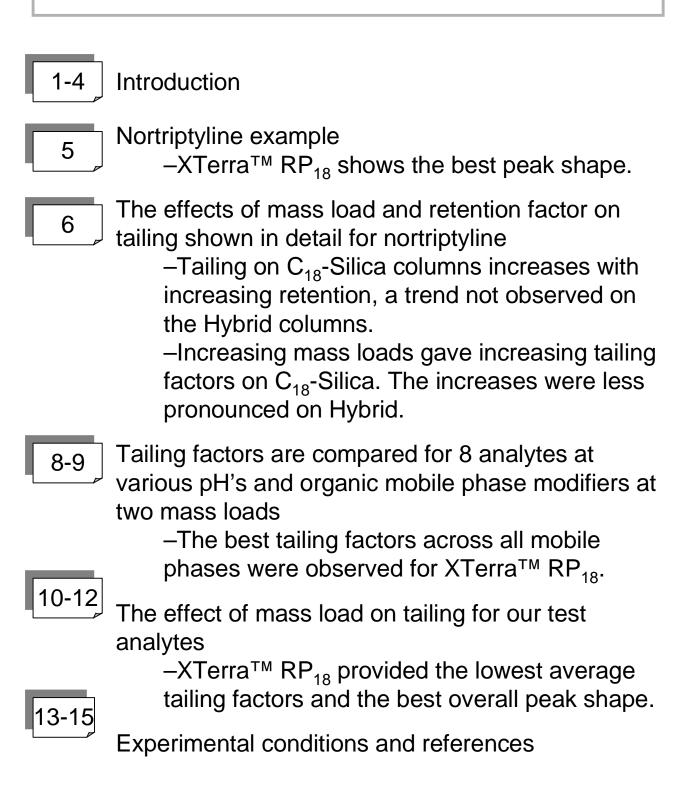
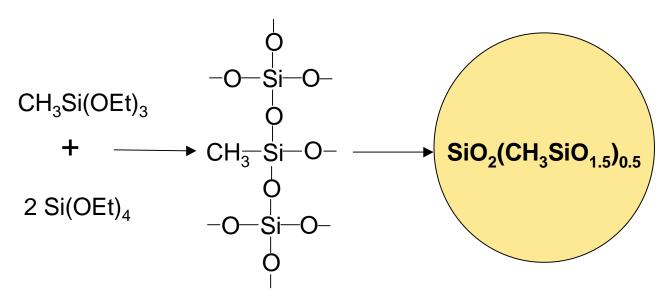
Chromatographic Evaluation of a New Organic/Inorganic Hybrid Reversed-Phase HPLC Packing

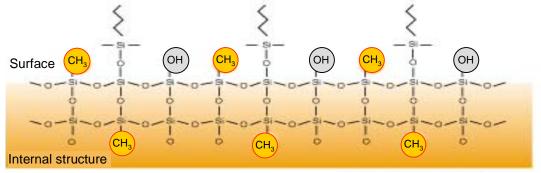

B. Alden, C. Gendreau, <u>P. Iraneta</u>, T. Walter Waters Corporation, 34 Maple Street, Milford, MA 01757-3696

Summary:

An organic/inorganic hybrid porous particle has been synthesized for use as an HPLC packing. This new chromatographic hybrid particle has been additionally surface bonded to attach multiple C_8 and C_{18} groups. These surface bonded hybrid particles not only exhibit extended pH stability, but show improved performance for basic compounds. On silica-based reversed-phase columns, broad and tailing peaks for many basic analytes have been attributed to surface silanols. We attribute the improved performance of the surface bonded hybrid particles to their reduced surface silanol concentration. Peak shape for a variety of basic, neutral, and acidic analytes was studied on reversed-phase bonded hybrid packings. Data is presented illustrating peak shape trends as a function of injected mass, mobile phase pH, and organic modifier.

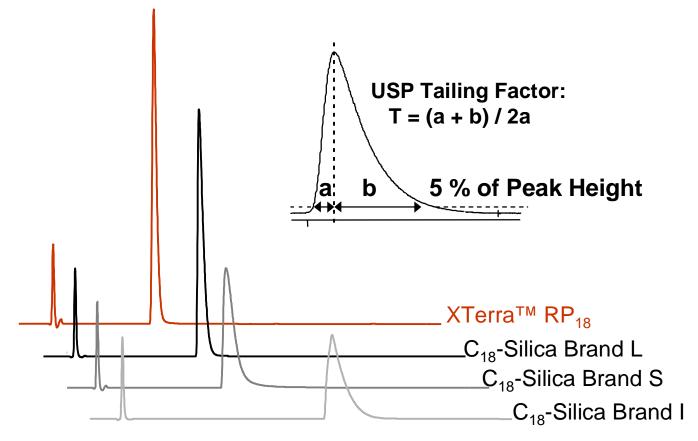

Poster Outline

Hybrid Technology Particle


- •Hybrid Organic/Inorganic materials contain both organic and inorganic components
- •The hybrid particles described here were synthesized from Si(OEt)₄ and CH₃Si(OEt)₃:

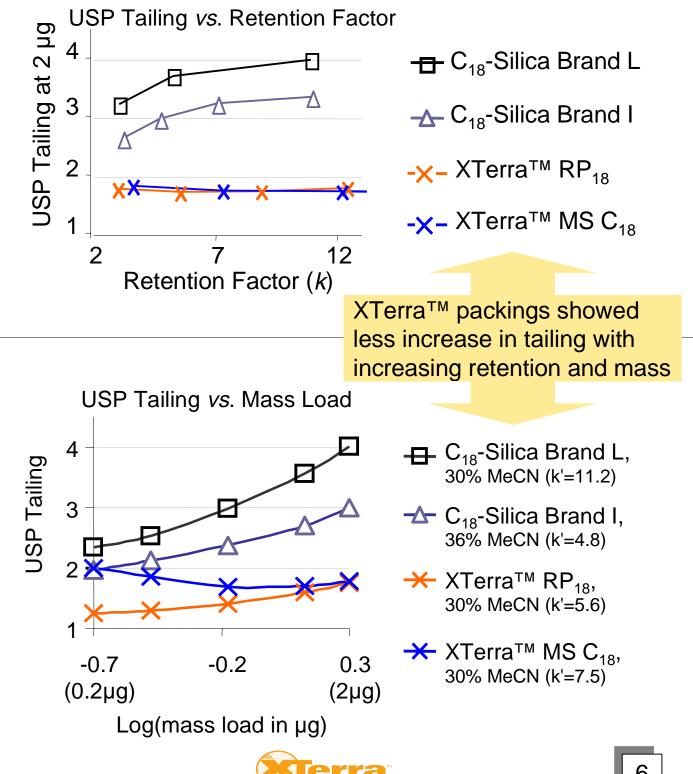
- Hybrid particles combine:
 - •efficiency and mechanical strength of silica
 - •extended pH range and absence of base tailing of organic polymers

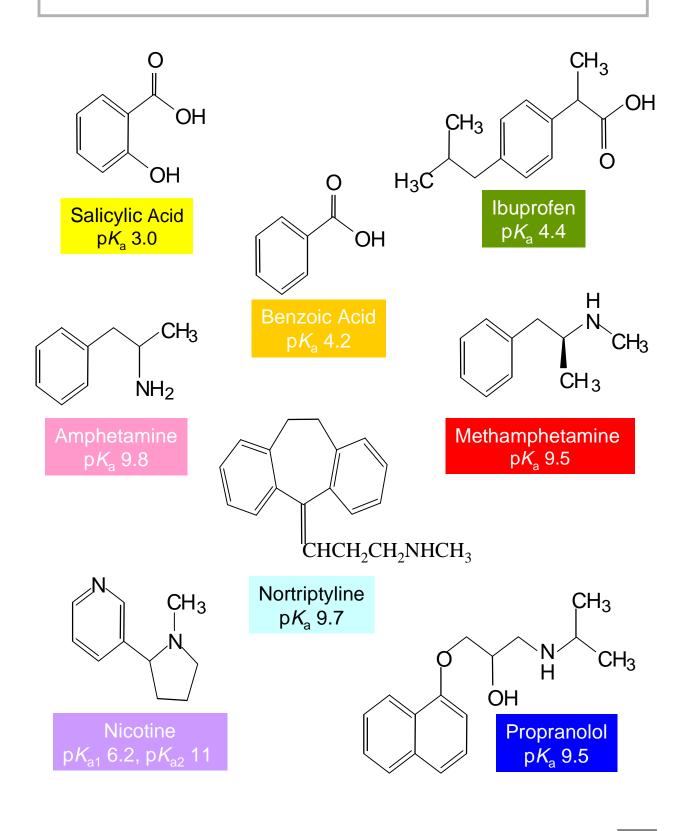
XTerra[™] Bonded Phases


Bonded XTerra[™] Particle

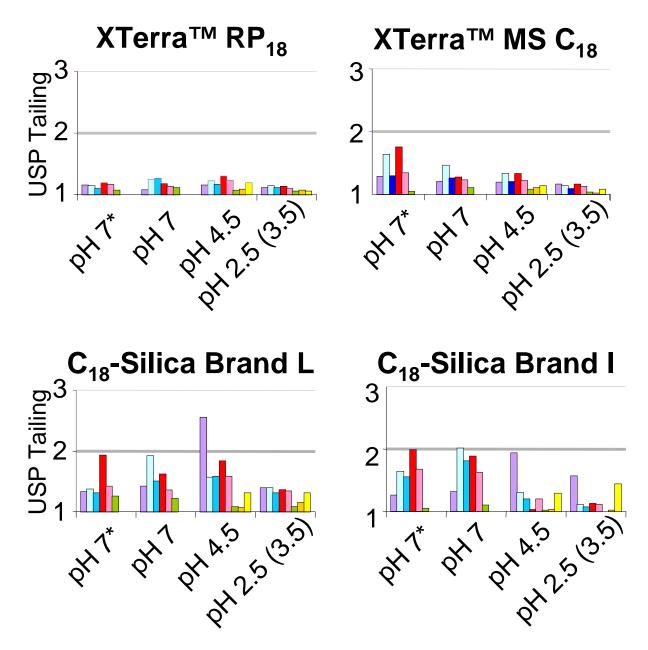
- I XTerra[™] bonded phases are based on the hybrid particles shown in the previous slide
- IXTerra™ RP₁₈
 - Embedded carbamate C₁₈ phase with a trimethylsilyl endcap
 - I 14.95% C
 - I 2.32 µmol/m²
- I XTerra[™] MS C₁₈
 - Trifunctional C₁₈ phase with a trimethylsilyl endcap
 - I 15.45% C
 - I 2.22 µmol/m²

Nortriptyline Example: pH 7/MeCN Mobile Phases

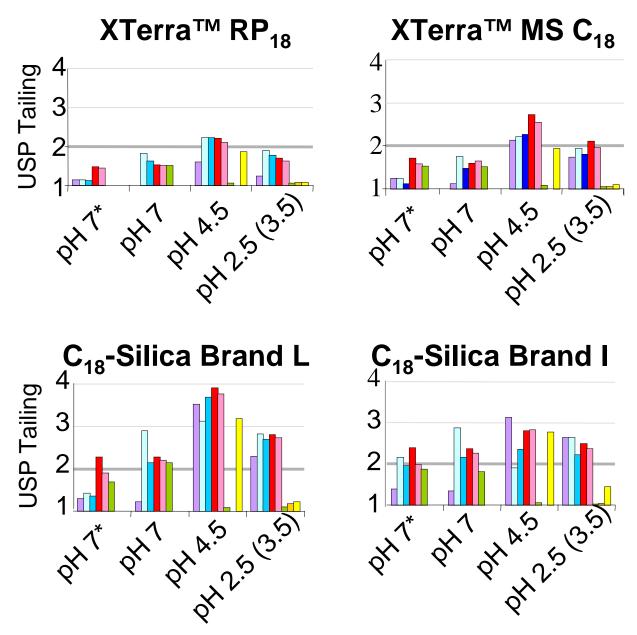

2 µg Load (88/12) 20 mM K₂HPO₄ pH 7/Acetonitrile


C ₁₈ Packings	k	Ν	USP
	Retention Factor	5 sigma	Tailing
XTerra [™] RP ₁₈	3.151	3759	1.8
C ₁₈ -Silica Brand L	3.955	3051	2.9
C ₁₈ -Silica Brand S	4.336	684	3.4
C ₁₈ -Silica Brand I	6.507	759	2.9

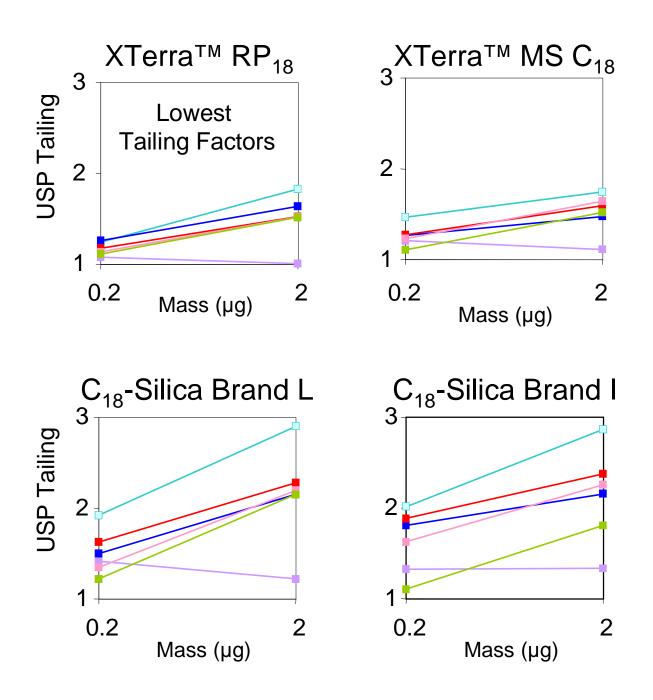
Nortriptyline: pH 7 / MeCN Tailing vs. Retention Factor and Mass Load



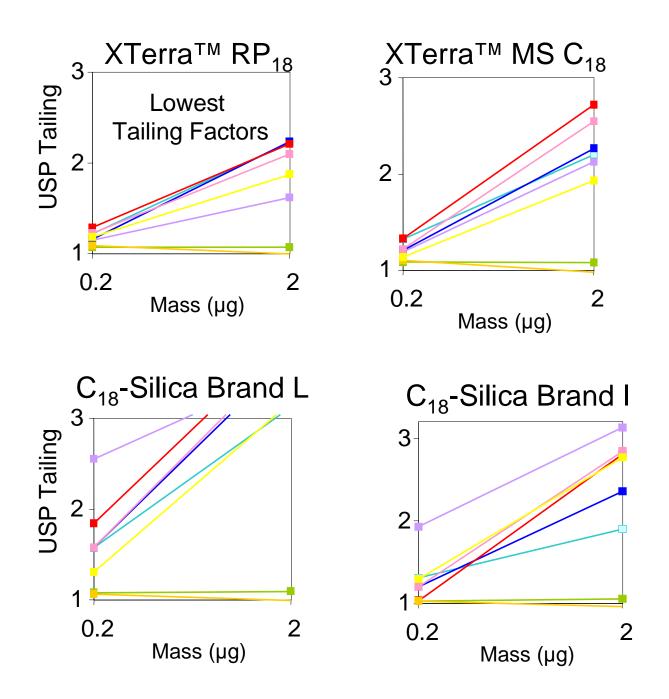
Analyte Structures



Comparison at 0.2µg Load Effect of Mobile Phase pH on Tailing


MeCN mobile phase modifier except for pH 7* (MeOH)

Comparison at 2µg Load Effect of Mobile Phase pH on Tailing


MeCN mobile phase modifier except for pH 7* (MeOH)

Effect of Mass Load on Tailing pH 7/ MeCN Mobile Phases

Effect of Mass Load on Tailing pH 4.5/ MeCN Mobile Phases

Conclusions

The lowest average tailing factors were obtained:

- on XTerra[™] RP₁₈ across all mobile phase pH's
- at pH 2.5 (3.5) with 0.2 µg loads
- at pH 7 with methanol with 2 µg loads

Average USP Tailing Factors at 0.2µg Mass Load					
C ₁₈ Packing	pH 7	pH 2.5 (3.5)	pH 4.5	pH 7	
	MeOH	MeCN	MeCN	MeCN	
XTerra [™] RP ₁₈	1.13	1.10	1.17	1.15	
XTerra [™] MS C ₁₈	1.35	1.10	1.19	1.23	
C ₁₈ -Silica Brand L	1.39	1.28	1.54	1.44	
C ₁₈ -Silica Brand I	1.47	1.16	1.24	1.55	

Average USP Tailing Factors at 0.2µg Mass Load

Average USP Tailing Factors at 2µg Mass Load

C ₁₈ Packing	pH 7	pH 2.5 (3.5)	pH 4.5	pH 7
	MeOH	MeCN	MeCN	MeCN
XTerra [™] RP ₁₈	1.06	1.42	1.76	1.44
XTerra [™] MS C ₁₈	1.35	1.57	1.95	1.44
C ₁₈ -Silica Brand L	1.59	2.08	2.86	1.99
C ₁₈ -Silica Brand I	1.85	1.92	2.18	1.99

Experimental Conditions: HPLC Mobile Phases

Organic:	%MeOH	%MeCN			
Buffer pH:	pH 7	pH 10	pH 7	рН	pH 2.5
				4.5	or 3.5 ¹
Nicotine ¹	32	23	7	0	0
Nortriptyline	68	60	35	35	30
Propranolol	50	43	27	20	20
Meth- amphetamine	14	-	12	7	7
Amphetamine	14	-	7	7	7
Ibuprofen	50	23	27	55	50
Benzoic Acid	-	0	-	20	20
Salicylic Acid	-	0	-	7	30

Experimental Conditions: HPLC Conditions

- Column Configuration: 4.6 x150 mm
- C₁₈ Stationary Phases: 5 µm, high purity, low silanol activity, endcapped phases. Brands I and L are leading non-Waters brands.
- Flow Rate: 1.4 mL/min
- Temperature: 30 °C
- Injection Volume: 3 μL (0.2 μg), 30 μL (2 μg)
- Sample: 0.070 mg/mL analyte in 80/20 H₂O/MeOH (v/v)
- Void Volume: 0.016 mg/mL uracil determined in the mobile phase with the highest % organic
- Detection: 214nm, 220nm, or 254nm

Experimental Conditions: Buffers

- pH 10: Borate
 - $-20 \text{ mM H}_3\text{BO}_3$
- PH 7: Phosphate
 - $-20 \text{ mM K}_2\text{HPO}_4$
- PH 4.5: Acetate
 - 10 mM CH₃COONH₄
- PH 2.5 or 3.5: Phosphate
 - $-20 \text{ mM KH}_2\text{PO}_4$

References:

David Victor McCalley, "Influence of sample mass on the performance of reversed-phase columns in the analysis of strongly basic compounds by high-performance liquid chromatography," *Journal of Chromatography A*, 793 (1998) 31-46

