

"DMT ON" PURIFICATION OF DNA OLIGONUCLEOTIDES < 35 MER USING OASIS® HLB SPE PRODUCTS

OASIS® HLB EXTRACTION METHOD			96-well plate 30 mg WAT058951	3 cc cartridge 60 mg WAT094226	6 cc cartridge 200 mg WAT106202	
STEF		SYNTHESIS SCALE	0.1-0.2 µmol	0.2 µmol	0.1-1 µmol	
1	CONDITION: ACN	Organic solvent wets (conditions the sorbent and frits) 1 mL	2 mL	2 mL	Flow
2	EQUILIBRATION: 0.1 M TEAA, pH 7	Removes ACN and equilibrates sorbent with TEAA	1 mL	2 mL	2 mL	SRAVITY FLC
3	SAMPLE LOAD: in 0.1 M TEAA, pH 7	Retains target oligonucleotide and failure sequences	1 mL	2 mL	3 mL	GR
4	WASH 1: 8 % ACN in 0.1 M TEAA, pH 7 (v:v)	Remove weakly retained failure sequences	1 mL	2 mL	3 mL	mL/min
5	WASH 2: 12 % ACN in 0.1 M TEAA, pH 7 (v:v)	Remove strongly retained failure sequences	1 mL	2 mL	3 mL	1-2
6	DETRITYLATION: 2 % TFA Apply half of the volume by vacuum, release vacuum, wait 1 min, then resume vacuum	On cartridge cleavage of DMT group from target oligonucleotid	e 1 mL	2 mL	3 mL	JM FLOW
7	ELUTION: 20 % ACN in 0.36 M TEAA, pH 11.3	Neutralizes TFA, dissolves and elutes target oligonucleotide	1 mL	2 mL	2 mL	VACUUM

CAPILLARY GEL ELECTROPHORESIS ANALYSIS OF FRACTIONS FROM OLIGODEOXYTHYMINE (30-met) SPE PURIFICATION

0.1 M TEAA, pH 7 Buffer - commercially available

For 100 mL of 0.36 M TEAA buffer:

Mix 94.5 mL of MilliQ water and 0.5 mL of glacial acetic acid.

While mixing slowly add 5 mL of TEA, mix until it dissolves.

pH of final $0.36~\mathrm{M}$ solution is approximately $11.3~\mathrm{(desirable\ values\ are\ between\ 10.8-11.5)*}$

 * Keep in closed polypropylene bottle. Handle in hood, TEA has a strong odor.

TROUBLESHOOTING

Flow rates of > 0.5 mL/min in the load step (step 3) will cause sample breakthrough which reduces oligonucleotide recovery in final elution (step 7).

RECOVERY CALCULATION

Recovery of target oligonucleotide is determined by analysis with a UV absorbance spectrometer.

Take 10 μ l of sample solution (prior to loading), dilute to 1 mL and measure Absorbance A₂₆₀(L).

Take 10 μL of final elution (step 7), dilute to 1 mL and measure absorbance $\rm A_{260}(E)$.

 V_F = elution volume from step 7

 $V_1 =$ elution volume from step 3

Recovery (%) =
$$\begin{bmatrix} A_{260}(E) \\ A_{260}(L) \end{bmatrix} \times 100 \times \frac{V_E}{V_L}$$

DMT = dimethoxytrityl

ACN = acetonitrile

TEAA = triethylamine acetate

TFA = trifluoro acetic acid

OLIGONUCLEOTIDE PURITY DETERMINED BY CAPILLARY GEL ELECTROPHORESIS.

Source: M. Gilar, E.S.P. Bouvier, J. Chromatography A, vol 890 (1), 167-177.