
Waters ighicated the second of Application of Appli

LAH 0251 5/85 AN/OT/ED/OT/OT

Determining Column Efficiency Using the Model 840 Data System

Measuring column efficiency (or system bandspreading) is a simple process, but it requires care in drawing baselines, constructing perpendiculars, and making precise measurements with a ruler. The model 840 Data System provides a way to perform these measurements using only the 840 and a pocket calculator.

- 1. Run a column efficiency test as described in LAH 0129. Use a sampling rate of 10 points/second, and run a test chromatogram and measure the peak width at baseline (for a Nova-Pak™ C18 column, use 20 seconds).
- 2. Reprocess the data using SCANNER. When asked for a method name, use the default method, or the method used for the run.
- 3. Bring the test peak on the screen, and use the arrow keys to place the cursor on the baseline either before or after the peak.
- 4. Record the millivolt reading in the upper left hand corner of the screen. (this is the detector output at baseline, **V**_h).
- 5. Using the arrow keys, place the cursor at the apex of the peak, and record the millivolt reading (the detector output at the peak maximum, V_{max}).
- 6. Calculate the net peak height as $H = V_{max} V_{b}$.
- 7. Calculate the height at 4.4% as $H_{4.4} = (H \times 0.044) + V_b$.
- 8. Using the arrow keys, place the cursor near the beginning of the peak. Move the cursor until the millivolt reading is as close to $H_{4.4}$ as you can get it*, and press "SELECT". Move the cursor to the end of the peak, and again adjust the position until you are close to $H_{4.4}$, and press "FIND". The peak will be integrated, and a line of data will appear above the peak. Press "PRINT SCREEN", or record the retention time T_R (the first figure in the line of data), the start time T_S , and the end time T_E .
- Calculate the column efficiency as N = 25 X [T_R/(T_E T_S)]².
 If you are measuring system bandspreading, just convert T_S and T_E into volume in microliters: VOL = T X F X 1000, where F = flow rate in ml/min.
- *Normally you will not be able to get the reading to match H_{4.4} exactly, but the error in the plate count shouldn't be more than 5%, which is close enough for diagnosing most column problems. If you want a more accurate value, you can use interpolation to calculate T_S & T_E.

In the example shown above, the efficiency was determined as follows:

Determination of net peak height

$$V_b = 4.945$$
 $V_{mex} = 37.333$

$$H = 37.333 - 4.945 = 32.388 \text{ mV}$$

Calculation of height at 4.4%

$$H_{44} = (32.388 \times 0.044) + 4.945 = 6.370 \text{ mV}$$

Determination of retention time, start time and end time (see figure)

$$T_{R} = 6.47 \text{min}$$
 $T_{S} = 6.30 \text{min}$

$$T_E = 6.70$$
min

Calculation of efficiency

$$N = 25 \times [6.47/(6.70 - 7.30)]2 = 6541.$$