LAH 0263 TR/OT/RS/IC/CX



### 1985 PITTSBURGH CONFERENCE NEW ORLEANS, LA



NO. 1107

ANALYSIS OF CATIONS WITH NEW CATION EXCHANGE COLUMNS BY NON-SUPPRESSED ION CHROMATOGRAPHY

Attached is documentation of a presentation given at the 1985 PITTSBURGH CONFERENCE held in New Orleans from February 25 to March 1, 1985. published abstract is included below.

### 1107

NO. 1107 ANALYSIS OF CATIONS WITH NEW CATION EXCHANGE COLUMNS BY NON-SUPPRESSED ION CHROMATOGRAPHY

C. STACET, B. BELL, H.S. SCHULTZ, G. HARRISON, W.R. JONES, Waters Associates, 34 Maple St., Milford, MA 01757

New cation-exchange resins have been developed by sulfonating highly cross-linked polystyrene-DVB resins to give different levels of function-alization. Cations can be analyzed by non-suppressed ion chromatography with conductivity detection using these resins.

Divalent and polyvalent metal cations can be separated using a polyamine/ organic acid mobile phase in which the ammonium ions act as eluting ions and the organic acids act as complexing agents. Changes in the retention metal ions are affected by

- the capacity of the resin the choice of ammonium and organic acid ions in the mobile phase
- the addition of organic modifiers to the mobile phase

A combination of these changes can be used to optimize the separation of metal ions in industrial samples.

The resin can also be used to analyze organic amines with acidic mobile

A widely used method of analysis is ion-pairing chromatography with U.V. detection. An experimental column is shown to provide a reproducible and sensitive analysis using conductivity detection.

- A separation of ethanolamines is shown and can be affected by -
  - acid group in the eluent capacity of the resin organic modifier

Any questions regarding the paper should be directed to the author listed at the bottom of this page.



# AN EXPERIMENTAL CATION COLUMN FOR NON-SUPPRESSED ION CHROMATOGRAPHY

B. BELL C. STACEY H.S. SCHULTZ
G. HARRISON W.R. JONES

MILLIPORE WATERS CHROMATOGRAPHY DIVISION

MAPLE STREET MILFORD MA 01757

### **RESIN PROPERTIES**

- \* styrene-divinylbenzene copolymer
  - \* high cross linking
  - \* 10 um spherical particle
  - \*low levels of functionalization









# Tartaric acid/EDA pH 4.5

$$M2 + CHOH \longrightarrow [M(Tartrate)]^{\oplus}$$

$$COOH$$



[M(Tartrate)]







Column: 560 uequiv/g Eluent: 4mM tartrate / 2 mM EDA 20 min. Waters Associates

Column: 560 uequiv/g
Eluent: 2 mM tartrate / 1 mM EDA



# Retention of Metals

|    | 2mM Tartrate | 2mM Citrate | 2mM Succinate |
|----|--------------|-------------|---------------|
| Cd | 24.5         | •           | 25.5          |
| Pb | 25.3         | 10.2        | •             |
| Co | 19.75        | 9.6         | 23.55         |
| Ni | 17.15        | 6.5         | 23.1          |
| Cu | 8.8          | 4.17        | 22.25         |
| Ba | 38.5         | •           | •             |
| Zn | 16.10        | 8.33        | •             |
| Mn | 24.45        | ***         | 24.45         |
| Mg | 22.02        | •           | 21.3          |
| Sr | 28.25        | •           | 30.2          |
| Ca | 26.65        | 5.87        | 28.8          |

based on 5 x 0.46 cm. column packed with 560 uequiv./g resin

## IN CONCLUSION

- \* quick equilibration times
- \* full range of mobile phases
- \* no limitation of organic solvents
  - \* simple methods of analysis
    - \* direct detection by conductivity