
LAH 0135 10/83 AN/PA/QC/VT/WS

ANALYSIS OF FAT- AND WATER-SOLUBLE VITAMINS IN PHARMACEUTICAL PREPARATIONS I: CHROMATOGRAPHIC METHODOLOGY

The use of high performance liquid chromatographic techniques for the analysis of vitamin constituents has advantages over alternative assay methods. The traditional methods have relied upon different biological or chemical techniques for each vitamin. Not only are these methods relatively costly on a routine basis, but they are also subject to poor selectivity and accuracy caused by interfering species in the sample. HPLC is advantageous for vitamin analysis since the separation eliminates interfering substances and several vitamin compounds are measured simultaneously.

The QA-1TM Analyzer is capable of generating rapid and reproducible separations and quantitation for selected groups of vitamins in multivitamin formulations. Chromatographic conditions have been developed for both fatand water-soluble vitamins which utilize the same column so that only the mobile phase and detector wavelength need be changed to convert from one method to the other. Sample preparation techniques documented in the literature can be used prior to chromatographic analysis.

FAT-SOLUBLE VITAMIN STANDARDS

Injection volume: 10 ul

Column: Radial-PAKTM C₁₈, 5µm ,8mm X 10cm

Mobile Phase: CH3CN/THF/H2O, (55:37:8)

• Flow Rate: 4.0ml/min

Flow Volume: 4.0ml/min

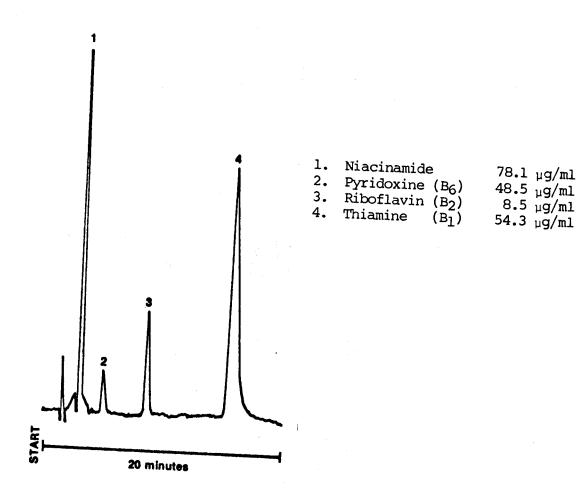
Wavelength: 280nm

Attenuation: $2 \uparrow 5$

WATER-SOLUBLE VITAMIN STANDARDS

Injection Volume: 10 µ1

Column: Radial-PAKTM C_{18} , $5\mu m$, $8mm \times 10cm$ Mobile Phase:


25% CH₃OH

75% H₂O containing 60% 0.01M PIC^R Reagent B7

and 40% RCSS Reagent D-4

Flow Rate: 2.Oml/min

Flow Volume: 40ml Wavelength: 254nm Attenuation: 2 + 4

