SUICIDE INHIBITION OF ONCOGENIC K-RAS G12C PROCEEDS VIA SHIFT TO THE INACTIVE CONFORMATION

Rane A. Harrison¹, Sang Min Lim^{2,3}, John C. Hunter⁴, Kenneth D. Westover⁴, Nathanael S. Gray^{2,3}, John R. Engen¹

¹Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA; ²Harvard Medical School, Boston, MA; ³Dana-Farber Cancer Institute, Boston, MA; ⁴The University of Texas Southwestern Medical Center at Dallas, Dallas, TX

INTRODUCTION

mutant cysteine in the G12C mutant of K-Ras, a variant which occurs in 10-20% of all Ras-driven cancers.

The goal of this study was to use HX MS to understand how covalent binding to K-Ras G12C by the GDP-analogue SML-8-73-1 altered the protein conformation. Does it push the protein into an inactive conformation similar to its GDP-bound state, or does it push the protein into an active conformation similar to its GTPbound state?

Figure 2 – Relative Deuterium Uptake Plots Comparison between GDP-bound, GMPPNP-bound, and inhibitor-bound states

- Several peptides showed differences:
 - The inhibitor-bound state mirrors GDP-bound (inactive) state: Green and red lines are on top of one another

Figure 3 – Some Regions Exhibit EX1 Kinetics, Most Regions Do Not Residues 83-91 (representing most of protein): EX2 Kinetics

 No broadening of isotopic distribution regardless of bound state Most peptides in this protein exhibit EX2 kinetics

Residues 7-20 (VVVGACGVGKSALT): EX1 Kinetics GDP GMPPNP

- 0s
- 10 s

10 m 10 m

- 30 m 🦳 📊 🕹
- 1h

- · Isotopic distribution for this peptide indicates heterogeneous populations when the protein is in the active state
- This phenomenon is unusual and indicates significant protein dynamics in the region covering residues 7-20 of K-Ras G12C

REFERENCES

- Vetter, I.R.: Wittinghofer, A. (2001) Science, 294, 1299-1304
- Etienne-Manneville, S.; Hall, A. (2002) Nature, 420, 629-635. Downward, J. (2003) Nat. Rev. Cancer, 3 (1), 11-22
- 4 Wales T.E. Engen J.R. (2006) Mass Spectrom Rev. 25 (1) 158-170
- 5. Ahn, J.; Engen, J. R. (2013) Chem. Today, 31 (1), 25-28. Kavan, D.; Man, P. (2011) Int. J. Mass Spectrom., 302, 53-58.

CONCLUSIONS

- Residues 7-20: adjacent to phosphate groups, significantly higher deuterium uptake in active conformation:
- Residues 114-120: adjacent to guanosine moiety, slightly higher deuterium uptake in active conformation
- Rest of protein: no significant difference in deuterium uptake between all states
- When bound to covalent inhibitor SML-8-73-1, deuterium uptake of K-Ras G12C mirrors GDP-bound state
- SML-8-73-1 likely stabilizes an inactive form of the protein and may deactivate oncogenic signaling
- Covalent inhibition may provide a viable means of targeting Ras directly, which has not been done successfully to date
- Conformational perturbations in proteins driven by small molecules are difficult to measure by most methods but can be easily interrogated using HX MS

ACKNOWLEDGMENTS

The Engen, Gray, and Westover Labs and for helpful discussion. 507 & GM101135), the NEU/DFCI joint funding initiative, and Waters Corp. for funding