AN INTEGRATED WORKFLOW FOR AUTOMATIC MAPPING OF DISULFIDE LINKAGES OF THERAPEUTIC PROTEINS **USING HIGH-RESOLUTION LCMS, ETD FRAGMENTATION AND TARGETED INFORMATICS**

Henry Shion, Asish Chakraborty and Weibin Chen Waters Corporation, Milford, MA 01757, USA

OVERVIEW

- Disulfide bond formation is critical for establishing three dimensional folding and maintaining proper function of therapeutic proteins.
- Localization and assignment of disulfide bonds are therefore an important aspect in protein structural analysis.
- In this study, non-reduced peptide maps were acquired and processed for several therapeutic proteins using Waters Biopharmaceutical System Solution with Unifi.
- ETD technique was used to induce both disulfide bond cleavage and backbone fragmentation
- This integrated approach, combining high performance LC-MS^E, ETD and targeted software, should be applicable for fast mapping and monitoring of disulfide linkages in the development of therapeutic proteins

Figure 1. Biopharmaceutical System Solution with UNIFI for disulfide bond mapping encompasses automated UPLC/MS^L Xevo G2-S QTof data acquisition, data processing, reporting and report sign-off tools.

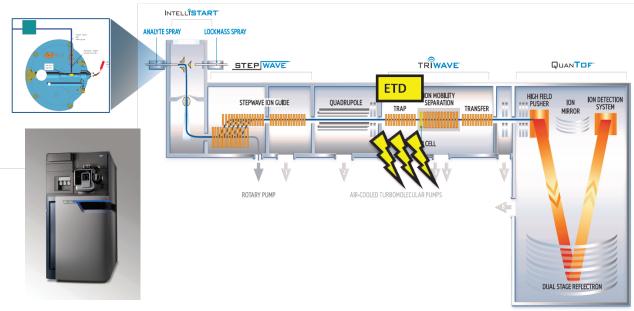


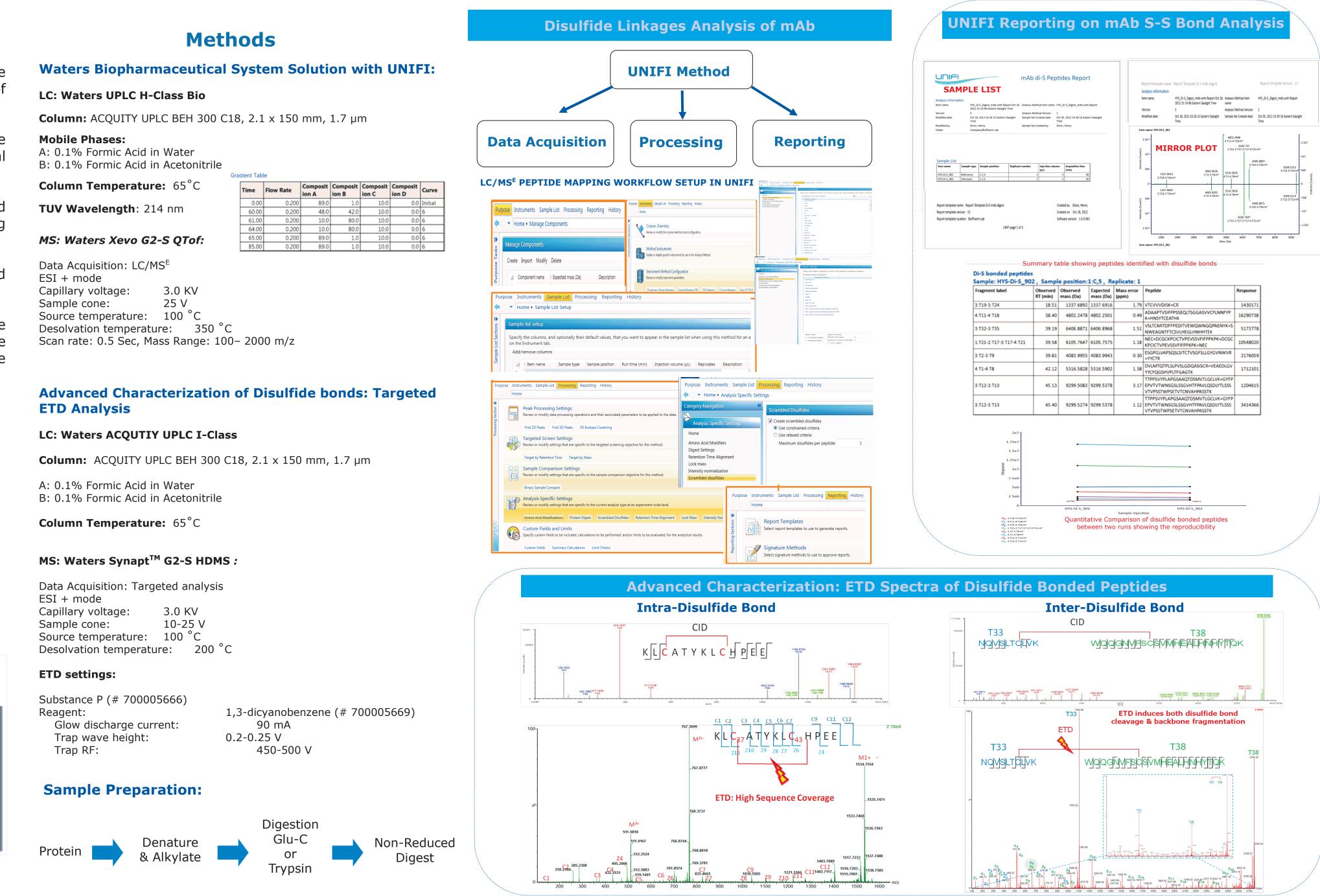
Figure 2. ETD spectra were collected using a Synapt G2-S with ETD capability

LC: Waters UPLC H-Class Bio

TUV Wavelength: 214 nm

MS: Waters Xevo G2-S QTof:

3.0 KV 25 V


ETD Analysis

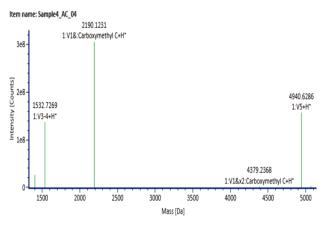
Column Temperature: 65°C

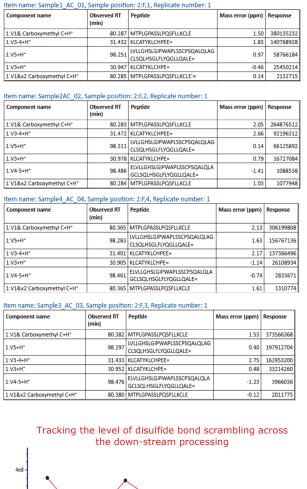
Data Acquisition: Targeted analysis ESI + mode 3.0 KV Capillary voltage: 10-25 V Sample cone: Source temperature: 100 °C

Substance P (# 700005666) Reagent: Glow discharge current: Trap wave height: Trap RF:

90 mA

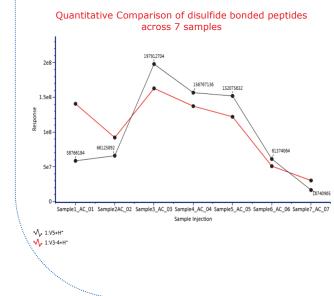
TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

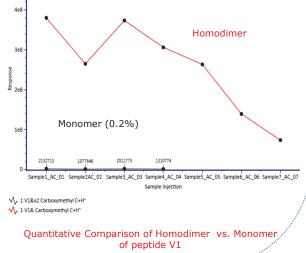

/aters THE SCIENCE OF WHAT'S POSSIBLE.


:C,5 , Replicate: 1				
Expected mass (Da)	Mass error (ppm)	Peptide	Response	
1337.6916	1.79	VTCVVVDISK=CR	1430171	
4802.2501	0.49	ADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYP K=HNSYTCEATHK	16290738	
6406.8968	1.51	VSLTCMITDFFPEDITVEWQWNGQPAENYK=S NWEAGNTFTCSVLHEGLHNHHTEK	5173778	
6105.7575	1.18	NEC=DCGCKPCICTVPEVSSVFIFPPKPK=DCGC KPCICTVPEVSSVFIFPPKPK=NEC	10548020	
4083.9943	0.30	ESGPGLVAPSQSLSITCTVSGFSLLGYGVNWVR =YYCTR	2176059	
5316.5902	1.38	DVLMTQTPLSLPVSLGDQASISCR=VEAEDLGV YYCFQGSHVPLTFGAGTK	1712101	
9299.5378	3.17	TTPPSVYPLAPGSAAQTDSMVTLGCLVK=GYFP EPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSS VTVPSSTWPSETVTCNVAHPASSTK	1204615	
9299.5378	1.12	TTPPSVYPLAPGSAAQTDSMVTLGCLVK=GYFP EPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSS VTVPSSTWPSETVTCNVAHPASSTK	3414366	

UNIFI Reporting on GCSF S-S Bond Analysis

	SAMPLE	LIST	
	GCSF Disul	fide Bond Mapping	g Report
Sample Information	n		
Item name:	Sample1_AC_01	Sample type:	Reference
		Sample position:	2:F,1
Item name:	Sample2AC_02	Sample type:	Unknown
		Sample position:	2:F,2
Item name:	Sample3_AC_03	Sample type:	Unknown
		Sample position:	2:F,3
Item name:	Sample4_AC_04	Sample type:	Unknown
		Sample position:	2:F,4
Item name:	Sample5_AC_05	Sample type:	Unknown
		Sample position:	2:F,5
Item name:	Sample6_AC_06	Sample type:	Unknown
		Sample position:	2:F,6
Item name:	Sample7_AC_07	Sample type:	Unknown
		Sample position:	2:F,7


Components plot showing peptides identified with free Sulfhydry expected and scrambled disulfide bonds



Summary table showing peptides identified with free Sulfhydry

expected and scrambled disulfide bonds

CONCLUSIONS

- The automated mapping of disulfide linked peptides (expected or scrambled) of GCSF and mAb has been achieved using Waters Biopharmaceutical system solution with UNIFI.
- The identity of disulfide bonded peptides is automatically assigned , based on accurate MS measurement and confirmed by high-energy MS^E fragment data.
- The UNIFI application workflow enables scientists in regulated or unregulated laboratory environments to acquire, process and report qualitative and quantitative information about disulfide linkages in biotherapeutics, with high confidence and minimal user intervention.
- ETD fragmentation cleaved disulfide bonds, allowing sequence information from both interchain and intrachain disulfide loop regions