

DETERMINATION OF AFLATOXINS UTILIZING XBRIDGE HPLC COLUMNS

John T. Martin Waters Corporation, Milford, MA, USA

BACKGROUND

Aflatoxins are toxic metabolites produced by certain fungi in food and feeds and have been associated with various health risks in livestock, domestic animals and humans worldwide. Potentially harmful effects include aflatoxicosis and carcinogenic effects which have been seen in laboratory animals. Because of their acute toxicological effects in humans, aflatoxins have been studied to a greater degree than most other mycotoxins.

Aflatoxins are produced primarily by strains of Aspergillus flavus and of Aspergilus parasiticus, plus related species of Aspergillus nomius and Aspergillus niger. There are four major aflatoxins, B1, B2, G1 and G2 that are significant as direct contaminants of foods and feeds. There are also two additional aflatoxin metabolites, M1 and M2, which have been isolated and determined to be harmful (Table 1 and Table 2).

B1 & B2	produced by Aspergillus flavis and Aspergillus		
	parasiticus		
G1 & G2	produced by Aspergillus parasiticus		
M1	metabolite of aflatoxin B1 in humans and		
	animals (exposure in ng can come from		
	mother's milk)		
M2	metabolite of aflatoxin B2 in milk of cattle fed		
	on contaminated foods		

Table 1. Aflatoxin sources

B1	C17H1206
B2	C17H1406
G1	C17H1207
G2	C17H1407

Table 2. Aflatoxin molecular structures

These toxins have similar structures and form a unique group of highly oxygenated, naturally occurring herocyclic compounds (Figure 1). Aflatoxins B2 and G2 have been identified as dihydroxy derivatives of B1 and G1 respectively.

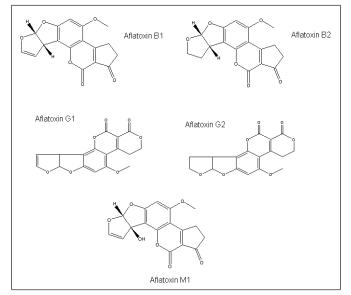


Figure 1. Aflatoxin molecular structures.

Crops which are frequently affected by aflatoxins include cereals (wheat, maize, sorghum, rice), oil seeds (peanuts, sunflower, cotton, soybean), spices (chili peppers, black pepper, red pepper, turmeric, ginger) and tree nuts (almond, pistachio, brazil nut, coconut, walnut). Virtually all sources of commercial peanut butter contain minute quantities of aflatoxin but at levels far below the US Food and Drug Administration's recommended limit.

Humans are exposed to aflatoxins when consuming foods contaminated with products of fungal growth. Even though heavily contaminated food is not permitted to enter the food supply in developed countries, concern still exists regarding the possible adverse effects resulting from long-term exposure to low levels of aflatoxins in the foods. Aflatoxins are considered unavoidable contaminants in food and feed, even where good manufacturing practices are in place. The FDA, as well as other regulatory bodies around the word, has established specific guidelines on acceptable levels of aflatoxins in human food and animal feed as seen in Table 3.

Action Levels for Aflatoxins

United States (FDA) Action Levels (B1, B2, G2, G2, M1)

Food Stuff	Level	Regulation
All products - except milk - designated for humans	20 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
Milk	0.5 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
Corn for immature animals and dairy cattle	20 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
Corn for breeding beef cattle, swine and mature poultry	100 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
Corn for finishing swine	200 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
Corn for finishing beef cattle	300 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
Cottonseed meal (as feed ingredient)	300 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)
All feedstuff other than corn	200 ng/g	Policy Guides 7120.26, 7106.10, 7126.33)

EU Action Levels

Food Stuff	Level	Regulation
М1		
Milk	50 ng/l (ppt)	VO [(EG) Nr. 466/2001]
Newborn baby formula and infants formula, inluding newborn baby milk formula and follow-on milk	25 ng/kg (ppt)	VO [(EG) Nr. 683/2004]
Dietary foods for special medical purposes intended specifically for infants	25 ng/kg (ppt)	VO [(EG) Nr. 683/2004]
B1		
Food, peanuts, shell fruits, dried fruits, cereals	2 µg/kg (ppb)	VO [(EG) Nr. 2174/2003]
Maize (unprocessed) and spices	5 μg/kg (ppb)	VO [(EG) Nr. 2174/2003]
Cereal and other complementary foods for infants and small children	100 ng/kg (ppt)	VO [(EG) Nr. 683/2004]
Dietary foods for special medical purposes intended specifically for infants	100 ng/kg (ppt)	VO [(EG) Nr. 683/2004]
B1, B2, G1, G2		
Spices (e.g. chilli, paprika, pepper, nutmeg, ginger and turmeric)	10 µg/kg (ppb)	VO [(EG) Nr. 2174/2003]
Cereals	4 μg/kg (ppb)	VO [(EG) Nr. 2174/2003]
Peanuts, shell fruits, dried fruits for direct consumption or as food ingredients	4 µg/kg (ppb	VO [(EG) Nr. 2174/2003]
Dietary foods for infants and young children	50 ng/kg (ppt)	VO [(EG) Nr. 683/2004]

Japan Action Levels

Food Stuff	Level	Regulation		
B1				
All foods	10 µg/kg	Food Sanitation Law		
Compound feeds for cattle (except calves, dairy cows), pigs (except piglets),	20 µg/kg	Food Sanitation Law		
chicken (except young chicken, broilers) and quails				
Compoung feeds for calves, dairy cows, piglets, young chicken and broilers	10 µg/kg	Food Sanitation Lawt		

Table 3. Aflatoxin regulatory action limits.

In addition to the health ramifications, there is also an economic impact attributable to aflatoxin growth linked directly to crop and livestock losses as well as indirectly to the cost of governmental programs designed to reduce risks to animal and human health. The Food and Agriculture Organization (FAO) estimates that 25% of the world's food crops are affected by mycotoxins, of which the most widespread are the aflatoxins. Losses attributable to aflatoxin contaminated feeds include death and the lesser effects of immune system suppression, reduced growth rates and losses in feed efficiency. Other adverse economic effects of aflatoxin include lower yields for food and fiber crops. Because of these dramatic effects, most countries have taken action to mitigate mycotoxins in general and aflatoxins specifically (Table 4).

Standarized Testing Methods for Aflatoxins

AOAC Official Methods for Mycotoxins

Official Method	Authority	Mycotoxin	First Action	Method and Publishing Citations
991.31	AOAC	Aflatoxin	1991 (Final	Aflatoxins in Corn, Raw Peanuts and Peanut Butter: Immunoaffinity
			Action 1994)	Column Method [J. of AOAC Int. 74(1) 81-88, 1991]
999.07	AOAC	Aflatoxin B1 and	1999	Aflatoxin B1 and Total Aflatoxins in Peanut Butter, Pistachio Paste,
		Total Aflatoxins		Fig Paste, and Paprika Powder: Immunoaffinity column Liquid
				Chromatography with Post-Column Derivitization [J. of AOAC Int. 83(2)
				320-40, 2000]
2000.08	AOAC	Aflatoxin M1	2000	Aflatoxin M1 in Liquid Milk: Immunoaffinity Column by Liquid
				Chromatography [J. of AOAC Int. 84(2) 437-43, 2001]
2000.16	AOAC	Aflatoxin B1	2000	Aflatoxin B1 in Baby Food by Immunoaffinity Column and HPLC [J. of
				AOAC Int. 84(4) 1116-1123, 2001]
20003.02	AOAC	Aflatoxin B1	2003	Immunoaffinity Column Cleanup with Liquid Chromatography Using
				Post-Column Bromination for Determination of Aflatoxin B1 in Cattle
				Feed: Collaborative Study [Journal of AOAC Int. 86(6) 1179-1186,
				2003]

CEN (European Committee for Standardization) Methods for Mycotoxins

Official Method	Authority	Mycotoxin	First Action	Method and Publishing Citations
EN-12955	CEN	Aflatoxin	July 1999	Foodstuffs - Determination of aflatoxins B1, and the sum of aflatoxin
				B1, B2, G1 and G2 in cereals, shell-fruits and derived products - High
				performance liquid chromatographic method with post column derivati-
				zation and immunoaffinity column cleanup
EN-14123	CEN	Aflatoxins	June 2003	Foodstuffs - Determination of aflatoxin B1, and the sum of aflatoxins B1,
				B2, G1 and G2 in peanuts, pistachios, figs and paprika powder - High
				performance liquid chromatographic method with post column derivati-
				zation and immunoaffinity column cleanup

Numerous analytical methods based on high-performance liquid chromatography (HPLC) have been developed for detecting and quantifying aflatoxins. This report describes two improved analytical methodologies for the identification of aflatoxins using XBridge[™] C₁₈ HPLC columns.

EXPERIMENTAL

Example One

By far, the most commonly used laboratory methods for aflatoxins utilize High Performance Liquid Chromatography (HPLC) with fluorescence detection. In this example, a standard aflatoxin mixture was used to evaluate the ability of the XBridge C_{18} HPLC column to separate these compounds.

Sample Preparation

A commercial mixture of aflatoxins B1, B2, G1 and G2. A final solution was appropriately prepared to create the final concentrations:

- B1: 250 pg/mL
- B2: 25 pg/mL
- G1: 250 pg/mL
- G2: 25 pg/mL

HPLC Conditions

HPLC Conditions	
Column	XBridge C ₁₈ , 4.6 x 150 mm, 5 μm
Part Number	186003009
Mobile Phase	Water/MeOH, 70/30, v/v
Flow Rate	0.6 ml/min
Injection Volume	10 µl
Column Temp.	40 °C
Detection	λex: 365 nm, λem: 455 nm
Instrument	Waters Alliance [®] 2695 with fluorescence
	detector

Results

Utilizing an excitation wavelength of 365 nm and an emission wavelength of 455 nm, all of the standard aflatoxins were separated and identified using the XBridge C_{18} column (Figure 2).

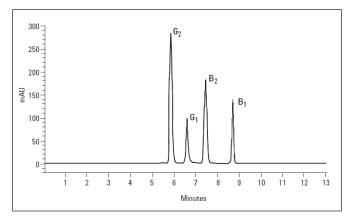


Figure 2. Chromatogram of aflatoxin standard mixture. Chromatogram provided courtesy of the University of Iowa.

Example Two

Humans are exposed to aflatoxins in a wide variety of food stuffs. In this example, a sample of commercially available red pepper was obtained and analyzed for mycotoxins, using the XBridge C_{18} HPLC column.

Sample Preparation

A commercial aflatoxin standard was obtained. Working standard solutions were prepared daily.

An extraction of the sample was performed utilizing the following: 50 g of sample was added to 5 g NaCl, extracted with 300 mL methanol:water (80:20, v/v) in a mixer. Filtered extract was diluted with 60 mL PBS and 65 mL of diluted filtrate was applied to an immunoaffinity column conditioned with PBS. The column was washed with 10 mL water and air applied until dry. Aflatoxins were then eluted by applying 1.20 mL of methanol to the column. The eluate was diluted with 1.50 mL water.

HPLC Conditions			
Column	XBridge C ₁₈ , 4.6 x 250 mm, 5 µm		
Part Number	186003117		
Mobile Phase	acetonitrile/water/methanol ,		
	17:54:29, v/v/v		
Flow Rate	1 mL/min		
Injection Volume	100 μl		
Column Temp.	40 °C		
Detection	λex: 333 nm, λem: 460 nm		
Instrument	Waters Alliance 2695 with a fluorescence		
	detector		

Results

Utilizing the described chromatographic conditions, a standard test mixture and an extract of red pepper were analyzed. The XBridge C₁₈ column provided excellent separation of the analytes of interest (Figure 3 and Figure 4). Toxins in the extract were identified based upon a comparison to the standard chromatogram.

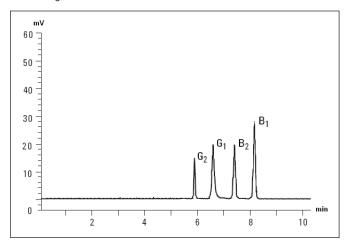


Figure 3. Chromatogram of prepared aflatoxin standard mixture: G2, 0.2 ng/mL; G1, 0.4 ng/mL; B2, 0.2 ng/ml; B1, 0.4 ng/mL. Chromatogram provided courtesy of Istanbul University.

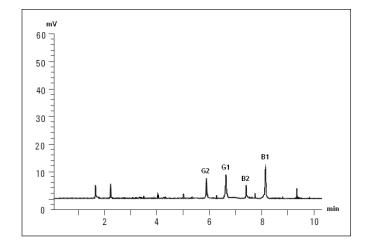


Figure 4. Chromatogram of aflatoxins in red pepper extract. Chromatogram provided courtesy of Istanbul University.

CONCLUSION

The ability of aflatoxins to cause cancer and related diseases in humans and impart broad economic impacts worldwide has made them a primarily mycotoxin of concern and widely analyzed. In these studies, XBridge C_{18} columns were evaluated for their ability to accurately separate aflatoxins. Providing excellent resolution and quantification at a picogram level, these columns are shown to be well suited for trace level analysis of these analytes.

Sales Offices:

Austria and European Export (Central South Eastern Europe,	India and India Subcontinent 91 80 2 837 1900	
CIS and Middle East) 431 877 18 07	Ireland 353 1 448 1500 Italy 39 02 274 211	
Australia 2 9933 1777		
Belgium 32 2 726 1000	Japan (81) 3 3471 7191	
Brazil 55 11 5094 3788		
Canada 800 252 4752	Korea (82) 2 820 2700	
G : 0001 0405 0000	Mexico 5255 5200 1860	
China 8621 6495 6999	The Netherlands +31 (0)76-50 87 200	
CIS/Russia +7 495 3367000	Norway 47 63 84 60 50	
Czech Republic 42 02 617 11384	Poland (48) 22 833 4400	
Denmark 45 46 59 8080	Puerto Rico 787 747 8445	
Finland +358 9 5659 6288		
F (22) 1 20 40 72 00	Singapore 65 6273 1221	
France (33) 1 30 48 72 00	Spain 34 93 600 93 00	
Germany 49 6196 400600	Sweden 46 8 555 11500	
Hong Kong 852 29 64 1800	C :: 1 141 C2 000 2020	
Hungary 36 1 350 5086	Switzerland 41 62 889 2030 Taiwan 886 2 2543 1898	
······j-·· j · · · · · · · · · · · ·		
	United Kingdom 44 208 238 6100	

Waters, The Science of What's Possible, XBridge and Alliance are trademarks of Waters Corporation. All other trademarks are acknowledged.

O 2008 Waters Corporation. Printed in the U.S.A. April 2008 WA60195 VW-PDF

Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com