Waters ion analysis method

Inorganic CE Method - General Anions High Mobility Electrolyte : Chromate

Method # N-601

CONDITIONS

Instrument: Quanta™ 4000

Electrolyte: Chromate with OFM™ Anion-BT

Chemistry (Patent Applied For)

Capillary: Fused Silica (60cm X 75μm)

Power Supply: Negative Voltage

Applied Voltage: 20 KV **Current:** 16 μAmp

Hydrostatic Injection: 10cm height for 30 seconds

Detection: UV at 254nm (Hg lamp)

Range: 0.002 AU

Detector Polarity: negative
Temperature: Ambient
Data: 820 Data System
Time Constant: 0.1 seconds
Sample Rate: 20 points/second

ELECTROLYTE PREPARATION

The working electrolyte is prepared by mixing electro-osmotic flow modifier (OFM™ Anion-BT) with electrolyte concentrate.

I. High Mobility Electrolyte Concentrate (Chromate)

To a 1-liter volumetric flask add:

~500 ml Milli-Q water

100m HI Chromate 23.41g of Na₂CrO₄ tetrahydrate (Mallinckrodt AR grade)

68 ml of 10 mN sulfuric acid. [The 10 mN sulfuric acid is prepared by

placing 560 microliters of sulfuric acid (Ultrex grade, JT Baker) into a clean 1 liter

flask and filling to the mark.]

Fill the flask to the mark with Milli-Q water and mix thoroughly. This concentrate may be stored in volumetric or sealed glass container for up to 1 year. The 1 liter concentrate makes 20 liters of electrolyte.

II. Working Electrolyte (Chromate + OFM Anion-BT) (pH 8.0)

To a 200 milliliter volumetric flask add:

= 20mM

5 ml of Waters OFM Anion-BT solution

Rinse the pipet or graduated cylinder twice with Milli-Q water, adding the rinses to the volumetric, then add:

10 ml of electrolyte concentrate (chromate)

Fill the flask to the mark with Milli-Q water, mix thoroughly and filter through a 0.45µm Millipore membrane (HA). This results in a chromate electrolyte of pH 8. Prepare fresh carrier electrolyte daily.

STANDARD PREPARATION

I. Concentrated Standard

1000 ppm	F-	0.221 g NaF (ACS) +/- 0.001 g
2000 ppm	CI-	0.329 g NaCl (ACS) +/- 0.001 g
4000 ppm	NO ₂ -	0.600 g NaNO ₂ (ACS) +/- 0.001 g
4000 ppm	Br	0.596 g KBr (ACS) +/- 0.001 g
4000 ppm	NO ₃ -	0.548 g NaNO ₃ (ACS) +/- 0.001 g
4000 ppm	HPO ₄ 2-	0.569 g KH ₂ PO ₄ (ACS) +/- 0.001 g
4000 ppm	SO ₄ 2-	0.592 g Na ₂ SO ₄ (ACS) +/- 0.001 g
4000 ppm	HCO ₃ -	0.707 g Na ₂ CO ₃ (ACS) +/- 0.001 g

Prepare separate standard concentrates by diluting each of the above to 100 ml with Milli-Q water

II. Wörking Standard

Pipet 100 μ l of each standard concentrate into a 100-ml volumetric flask and dilute with Milli-Q water to result in the working standard (see front page). Prepare fresh working standard weekly. Always include Bromide and Phosphate in the working standard.

DETECTION LIMITS:

2 x Baseline Noise

<u>Analyte</u>	<u>PPB</u>
Br	380.
CI ⁻ SO ₄ ²⁻	145. 172.
NO ₂ -	325.
NO ₃ -	350.
F-	89.
HPO ₄ 2-	375.
CO ₃ 2-	360.

COMMENTS:

- 1. Always use 4 ml vials filled to the neck with electolyte.
- 2. Always use fresh electrolyte with each carousel-load of samples.
- 3. If fluoride and phosphate co-elute for a given sample, change the electrolyte in the corresponding vial and rerun the sample.
- 5. For further information or questions, contact your Waters Inorganic Analysis Specialist or the Inorganic Analysis Group in Milford, MA.