lication B

R Prescription for success

930792

Rx 022 8/90

ELECTROPHEROGRAM OF AN ENANTIOMERIC SYNTHESIS PRODUCT PRIOR TO HPLC PURIFICATION

CONDITIONS ON WATERS QUANTA™ 4000

MODE:

FZCE

BUFFER:

0.01 M H,PO,

pH = 2

12 mM Heptakis(2,6-di-O-

methyl)-B-Cyclodextrin

MODIFIER:

20 % MEOH

CAPILLARY:

35 cm X 50 µm i.d.

VOLTAGE:

+ 18 KV

DETECTOR:

INJECTION:

UV @ 214 nm 5 sec x 10 cm Hydrostatic

REFERENCE:

PEAK IDENTIFICATION:

2B. Impurity (+)

1A. Desired Product (-)

1B. Desired Product (+) 2A. Impurity (-)

Michael Swartz, Senior Chemist, Pharmaceutical Market-

SAMPLE MATRIX:

Sample Solution @0.05 mg/ml in

50:50 MeOH / H,0

ing Laboratory

Author: Peter Rahn

INTERESTING FACTS

- 1. Chiral Separations are a critical concern for the pharmaceutical chemist. Capillary electrophoresis represents a new technique available for these chemists.
- 2. CE offers high efficiency separations with a very short analysis time. The CE separation was performed on a 75 μ m capillary for better sensitivity.
- 3. The impurity in this sample was also enantiomeric as shown in the first electropherogram.
- 4. The excellent signal to baseline noise level noted in this electropherogram is typical of the Quanta 4000's performance using the discretely variable UV/VIS detector.
- 5. Other chiral separations performed on the Quanta 4000 are presented in Rx 017 8/90 through Rx 021 8/90.
- 6. The electrolyte is preparerd by adding 0.01M Phosphoric acid at pH = 2 to 12 mM Heptakis(2,6-di-O-methyl)- β -Cyclodextrin. This derivatized cyclodextrin is available from Pierce Chemical. After filtering, 20% MeOH is added as the organic modifier.