

采用配备ACQUITY QDa检测器的ACQUITY UPLC H-Class系统和Empower软件对化妆品和个人护理产品中的初级芳香胺进行合规性分析

Jane Cooper 沃特世公司(英国威姆斯洛)

应用优势

将ACQUITY® QDa®与ACQUITY UPLC® H-Class系统联用,提升对化妆品和个人护理产品中初级芳香胺 (PAA) 鉴定与定量的可信度:

- 极佳的色谱分离度和灵敏度。
- 通过缩短运行时间提高样品通量, 减少溶剂用量。
- 相较于现有方法、灵敏度、选择性和 稳定性更好。
- 经济有效并且可靠的质量数确认。

沃特世解决方案

ACQUITY UPLC H-Class系统

ACQUITY QDa检测器

Empower® 3色谱数据软件

关键词

初级芳香胺、PAA、偶氮染料、 化妆品、个人护理产品

简介

初级芳香胺 (PAA) 作为一种化工原料被大量广泛地用于化学行业。许多PAA被证实或疑似具有致癌性并且评级为剧毒^{1,2,3},存在多种潜在健康风险,因此在世界范围内对其进行了严格规定。欧盟化妆品法 (EC) 1223/2009号法规4禁止多种PAA用于化妆品。

尽管具有毒性和致癌性,PAA仍然是许多商品的重要生产原料,诸如药品、农药、炸药、环氧聚合物、橡胶、芳香族聚氨酯产品和偶氮染料。虽然并不期望最终产品中含有PAA,但PAA还是会因为不完全反应、杂质、副产物等原因或作为降解产物存在于最终产品中。例如,PAA能够以偶氮染料副产物的形式产生,而偶氮染料种类繁多,属于广泛使用的有机染料。偶氮染料可用于特种漆、印刷油墨、清漆和粘合剂,而且存在于多种产品中,例如纺织品、化妆品、个人护理产品、塑料制品,还存在于食品接触材料中。

为确保公共安全和产品功能,已对化妆品和个人护理产品严格立法。 自此,产品生产过程中使用诸如PAA等原料的生产商必须对各种管制 参数进行监测和定量,例如是否存在PAA。

此前进行PAA分析的示例方法包括:

- 使用双(2-乙基)磷酸酯进行离子对萃取,再用氯甲酸异丁酯衍生, 然后进行GC/MS分析^{5,6};
- 使用阳离子交换小柱完成固相萃取 (SPE) 后进行UPLC®分析⁷;
- 通过液相吸附浓缩还原,然后进行热解吸GC/MS分析8。

但此前所用的许多PAA分析方法在稳定性、选择性和灵敏度方面都有所欠缺,并且需要进行繁琐耗时且成本高的前处理(衍生化、SPE)。

1

实验

LC条件

LC系统: ACQUITY UPLC H-Class

运行时间: 10.00 min

色谱柱: ACQUITY BEH C₁₈, 1.7 µm, 2.1 x 50 mm

柱温: 40 ℃ 样品温度: 10 ℃

流动相A: 水+0.1%甲酸 流动相B: 甲醇+0.1%甲酸 流速: 0.4 mL/min

进样体积: 10.0 µL 流动相梯度详见表1。

	时间 (min)	流速 (mL/min)	%A	%B	曲线
1	初始	0.400	95	5	_
2	1.00	0.400	95	5	6
3	3.10	0.400	75	25	6
4	6.10	0.400	59	41	6
5	8.00	0.400	0	100	6
6	9.00	0.400	0	100	6
7	9.01	0.400	95	5	6
8	10.00	0.400	95	5	6

表1. ACQUITY UPLC H-Class流动相梯度。

MS条件

质谱检测器: ACQUITY QDa

电离模式: ESI+ 毛细管电压: 0.8 kV 探头温度: 450 ℃

采集模式: 选择离子监测(SIR)

锥孔电压: 15 V

PAA列表、对应CAS号、预期保留时间和锥孔电压详见表2。

化妆品和个人护理产品行业中理想的PAA分析解决方案 应能突破之前方法的限制,同时确保可靠性和通用性, 以满足法规要求。

本应用资料介绍了一种准确、快速并且稳定的替代方法,用以实现化妆品和个人护理产品中PAA的快速分析,该方法采用配备ACQUITY QDa检测器的Waters® ACQUITY UPLC H-Class系统,通过Empower 3软件进行控制。

仪器控制、数据采集和结果处理

Empower 3软件用于控制ACQUITY UPLC H-Class系统和ACQUITY QDa检测器以及数据采集和定量分析。

样品制备

化妆品和个人护理产品样品分析(眼影、腮红、洗发水)

- 0.5 g(固体样品)或0.5 mL(液体样品),加8 mL水和2 mL 甲醇。涡旋混合2分钟(1600 rpm)。
- 取1 mL提取物离心约5分钟(10,000 rpm)。
- 在LC样品瓶中用甲醇稀释离心后的提取物,以供分析 (250 µL提取物+750 µL甲醇)。

PAA 编号	初级芳香胺 (PAAs)	CAS编号	m/z	保留时间 (min)
1	苯胺(Aniline)	62-53-3	94	0.47
2	邻甲苯胺(o-Toluidine)	95-53-4	108	0.96
3	间苯二胺(1,3-Phenylenediamine)	108-45-2	109	0.33
4	2,4-二甲基苯胺(2,4-Dimethylaniline)	95-68-1	122	2.55
5	2,6-二甲基苯胺(2,6-Dimethylaniline)	87-62-7	122	3.04
6	2,4-二氨基甲苯(2,4-Toluenediamine)	95-80-7	123	0.40
7	2,6-二氨基甲苯(2,6-Toluenediamine)	823-40-5	123	0.34
8	邻甲氧基苯胺(o-Anisidine)	90-04-0	124	0.82
9	4-氯苯胺 (4-Chloroaniline)	106-47-8	128	1.84
10	2-甲氧基-5-甲基苯胺(2-Methoxy-5-methylaniline)	120-71-8	138	2.53
11	4-甲氧基间苯二胺(4-Methoxy-m-phenylenediamine)	615-05-4	139	0.38
12	2-萘胺(2-Naphtylamine)	91-59-8	144	3.71
13	3-氨基-4-甲基苯甲酰胺(3-Amino-4-methylbenzamide)	19406-86-1	151	0.71
14	3-氯-4-甲氧基苯胺(3-Chloro-4-methoxyaniline)	5345-54-0	158	1.45
15	5-氯-2-甲氧基苯胺(5-Chloro-2-methoxyaniline)	95-03-4	158	4.70
16	1,5-萘二胺(1,5-Diaminonaphtalene)	2243-62-1	159	0.43
17	2-甲氧基-4-硝基苯胺(2-Methoxy-4-nitroaniline)	97-52-9	169	4.62
18	4-氨基联苯(4-Aminobiphenyl)	92-67-1	170	5.62
19	2-氨基联苯(2-Aminobiphenyl)	90-41-5	170	6.83
20	联苯胺(Benzidine)	92-87-5	185	0.42
21	4-氯-2,5-二甲氧基苯胺(4-Chloro-2,5-dimethoxyaniline)	6358-64-1	188	4.76
22	4-氨基偶氮苯(4-Aminoazobenzol)	60-09-3	198	8.14
23	4,4'-二氨基二苯甲烷 (4,4'-Methylenedianiline)	101-77-9	199	0.67
24	3,3'-二甲基联苯胺(3,3'-Dimethylbenzidine)	119-93-7	213	2.37
25	4,4-二氨基二苯硫醚(4,4'-Thioaniline)	139-65-1	217	3.98
26	邻氨基偶氮甲苯(o-Aminoazotoluene)	97-56-3	226	8.62
27	4,4'-二氨基-3,3'-二甲基二苯甲烷	838-88-0	227	3.32
	(4,4'-Diamino-3,3'-dimethylbiphenylmetha)			
28	3-氨基-4-甲氧基苯甲酰苯胺(3-Amino-p-anisanilide)	120-35-4	243	5.10
29	邻联茴香胺(o-Dianisidine)	119-90-4	245	2.61
30	4,4'-二氨基-3,3'-二氯二苯甲烷	101-14-4	267	8.18
	(4,4'-Diamino-3,3'-dichlorobiphenylmethane)			

表2. PAA、对应CAS号、m/z和预期保留时间。

结果与讨论

建立最佳的UPLC和SIR条件,使所有化合物均在10分钟内被洗脱。使用ACQUITY QDa检测器代替UV检测显著提升了方法开发速度。

在方法开发过程中,通常要考虑不同的条件/参数,例如色谱柱、流动相和梯度的选择。 这些选择可能使目标化合物的洗脱顺序发生 改变。仅通过UV检测进行峰追踪需要分析各 个确证标准品以确认洗脱顺序(Rt)。但使用 质谱检测时,可轻松跟踪色谱峰移动并轻松 识别存在的共洗脱峰。

图1为共洗脱峰识别的示例,所示为最佳波长相近的两种PAA(4,4'-二氨基二苯甲烷和2-甲氧基-5-甲基苯胺)。

配制范围在0.001 μg/mL-1.0 μg/mL内的混标, 对所有目标PAA进行分析(使用所开发方法, 相当于0.08-80 mg/Kg范围内的提取样品,提 取物被稀释时则更大)。图2所示为各种PPA 的SIR色谱图。

表2中详细列出了化妆品和个人护理产品中 PAA筛查的SIR质谱检测条件,可对通过制备 后的样品进行筛查。

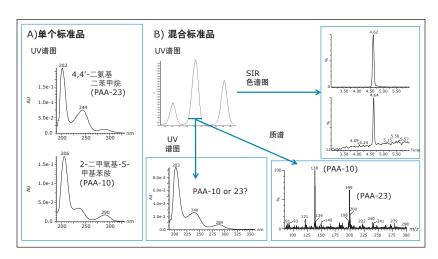


图1.利用两种PAA (4,4'-二氨基二苯甲烷和2-甲氧基-5-甲基苯胺) 说明在方法开发过程中通过质谱检测识别共洗脱峰的优势; a) 单个标准品的UV谱图, b) 混合标准品的UV谱图、质谱图和SIR色谱图



图2.30种PAA的SIR色谱图,混合校准标准品浓度为0.5 µg/mL。

化妆品和个人护理产品样品分析

向样品中添加不同水平的目标PAA,然后按照实验部分所述进行制备,以供分析。洗发水、腮红、眼影的结果详见表3、4和5,所选样品的SIR色谱图如图3所示。

胺类 物质	添加浓度 mg/Kg	mg/Kg	回收率 (%)*
苯胺	0	0.012	N/A
	0.25	0.213	80.5%
	0.5	0.371	71.8%
	1.0	0.831	81.8%

表3. 添加不同浓度苯胺的洗发水。定量结果基于混合校准标准品。

^{*}空白校正后的回收率数据

胺类		度 mg/Kg	回收率
物质	mg/Kg		(%)*
2,6-二甲基苯胺	0	0.018	N/A
	0.25	0.202	73.6
	0.5	0.417	84.0
	1.0	0.895	90.4
4-氯苯胺	0	0.045	N/A
	0.25	0.222	70.8
	0.5	0.429	76.8
	1.0	0.785	74.0
2-萘胺	0	ND	N/A
	0.25	0.254	101.6
	0.5	0.404	80.8
	1.0	0.865	86.5

表4. 添加了不同浓度的所选PAA的腮红。定量结果基于 混合校准标准品。

得到的回收率(介于72%-104%范围内)表明, 采用UPLC色谱分离和ESI电离分析目标化妆品和个人护理产品中的PAA时, 观察到信号增强/抑制很小。

添加浓度 mg/Kg	₹ mg/ Kg	回收率 (%)*
0	ND	N/A
0.25	0.207	82.8
0.5	0.353	70.6
1.0	0.775	77.5
0	0.095	N/A
0.25	0.354	103.6
0.5	0.455	72.0
1.0	0.857	76.2
0	0.069	N/A
0.25	0.268	79.6
0.5	0.510	88.2
1.0	0.893	82.4
	mg/Kg 0 0.25 0.5 1.0 0 0.25 0.5 1.0 0 0.25 0.5 1.0 0	mg/Kg Kg 0 ND 0.25 0.207 0.5 0.353 1.0 0.775 0 0.095 0.25 0.354 0.5 0.455 1.0 0.857 0 0.069 0.25 0.268 0.5 0.510

表5. 添加了不同浓度的所选PAA的眼影。定量结果基于混合校准标准品。

^{*}空白校正后的回收率数据。

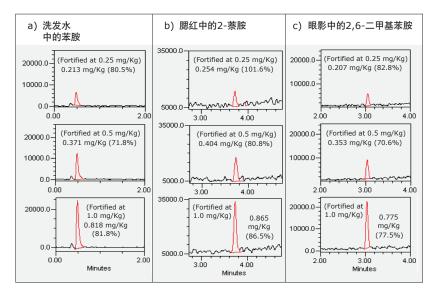


图3. 以下基质中所选PPA的SIR色谱图: a) 洗发水、b) 腮红和c) 眼影。

^{*}空白校正后的回收率数据。

结论

- 针对化妆品和个人护理产品样品开发了一种快速、稳定、灵敏度 高的PAA分析方法。
- ACQUITY QDa检测器可实现更加经济有效且可靠的质量数确认, 在方法开发和常规分析中表现出优于UV检测的实验可靠性。
- ACQUITY UPLC H-Class系统与ACQUITY QDa检测器相结合可实现准确且可重现的定量分析。
- Empower 3色谱数据软件能够为数据管理、数据处理和报告操作提供保证。
- 相较干先前的方法,本方法的商业优势体现在:
 - 增加了样品通量
 - 无需进行耗时的衍生化或预富集步骤,减少了溶剂用量。
 - 缩短了运行时间。
- ACQUITY H-Class系统是基于UPLC技术的四元系统,拥有最佳的 色谱分离度和灵敏度。

扫一扫,关注沃特世微信

Waters

THE SCIENCE OF WHAT'S POSSIBLE.®

Waters, ACQUITY, QDa, ACQUITY UPLC, UPLC, Empower和The Science of What's Possible是沃特世公司的注册商标。其它所有商标均归各自的拥有者所有。

©2015年 沃特世公司 中国印刷 2015年3月 720005355ZH AG-PDF

参考文献

- Benigni R, Passerini L. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment. Mutation Research. 511: 191–206; 2002.
- Anirban M.P, Cote R.J. Molecular Pathogenesis and Diagnosis of Bladder Cancer. Annual Review of Pathology. 4: 501–506; 2009.
- Ward E, Carpenter A, Markowitz S, et al. Excess Cancers in Workers Exposed to Ortho-Toluidine and Aniline. National Cancer Institute. 83(7): 501–506; 1991.
- 4. The European Parliament and the Council of the European Union. Regulations (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Official Journal of the European Union. L 342/59: 59–209, 22nd Dec 2009. [cited 2015 January 15]. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:en:PDF
- Akyuz M, Ata S. Determination of aromatic amines in hair dye and henna samples by ion-pair extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal. 47, 68: 2008.
- Ekladius L, King H K. A colorimetric method for the determination of aliphatic amines in the presence of ammonia. *J Chrom A*. 1129(1). Epub 2006 Jul 14.
- Aznar M, Canallas E, Nerin J. Quantitative determination of 22 primary aromatic amines by cation-exchange solid-phase extraction and liquid chromatography-mass spectrometry. *J Chrom A*. 2009; 1216: 5176–5181; 2009.
- 8. Zhang Q, Wang C, et al. Determination of aromatic amines from azo dyes reduction by liquid-phase sorbent trapping and thermal desorption-gas chromatography-mass spectrometry. *J Sep Sci.* 32: 2434–2441; 2009.

沃特斯中国有限公司 沃特世科技(上海)有限公司

北京: 010 - 5209 3866 上海: 021 - 6156 2666 广州: 020 - 2829 5999 成都: 028 - 6578 4990 香港: 852 - 2964 1800

免费售后服务热线: 800 (400) 820 2676

www.waters.com