

Rapid Separation of Vitamin $\rm K_1$ Isomers and Vitamin $\rm K_2$ in Dietary Supplements Using UltraPerformance Convergence Chromatography with a $\rm C_{18}$ Column

Jinchuan Yang Waters Corporation, Milford, MA, USA

APPLICATION BENEFITS

- Fast and reliable separation of vitamin K₁
 trans and cis isomers and MK-4 in less than
 three minutes.
- Separation is achieved on a C_{18} column; no special C_{30} column is needed.
- The use of carbon dioxide as the primary mobile phase minimizes organic solvent waste.

WATERS SOLUTIONS

ACQUITY UPC^{2®} System with the ACQUITY UPC² PDA Detector

ACQUITY UPC2 HSS C₁₈ SB Column

Empower® 3 CDS Software

KEY WORDS

Vitamin K_1 isomers, phylloquinone, menaquinone, menatetrenone, MK-4, UPC²

INTRODUCTION

Vitamin K_1 (phylloquinone) is an essential human nutrient produced in plants, especially green leafy vegetables. The vitamin K_1 in natural products exists mainly as the *trans* form, while the vitamin K_1 used in food supplementation is often synthetic K_1 , which may contain appreciable amounts of the *cis* form. The *trans*-vitamin K_1 is bioactive, while the *cis*- K_1 is not. It is highly desirable to separate the *trans*- and the *cis*-vitamin K_1 isomers to truly evaluate the nutritional value of the supplement ingredient. Available HPLC methods for the separation of vitamin K_1 isomers require C_{30} columns. Their typical run time is about 20 minutes, and chlorinated solvents are used in some of the methods.¹⁻³

UltraPerformance Convergence ChromatographyTM (UPC²) is a separation technique that leverages the unique properties (*i.e.*, low viscosity and high diffusivity) of compressed CO_2 at or near its supercritical state, as well as sub-2 micron particle packed columns to significantly improve the separation efficiency, speed, and selectivity.⁴ This application note demonstrates a fast separation of vitamin K_1 *trans* and *cis* isomers and menatetrenone (MK-4), a common form of vitamin K_2 , by UPC² in less than three minutes on an ACQUITY UPC² HSS C_{18} SB Column. Figure 1 shows the structures of vitamin K_1 isomers and MK-4. Comparing to current LC-based vitamin K_1 *trans* and *cis* isomers analysis methods, this UPC² method is faster, simpler (no need to use a C_{30} column), and it uses less organic solvent.

Figure 1. Structures of trans- and cis-vitamin K_1 and menatetrenone.

EXPERIMENTAL

Sample preparation

Vitamin K_1 (Sigma-Aldrich) and MK-4 (Sigma-Aldrich) were weighed and dissolved in iso-octane (ReagentPlus, Sigma-Aldrich) to obtain a stock solution at 1 mg/mL. Intermediate and working standard solutions were obtained by serial dilution of the stock solution with iso-octane. Vitamin K_1 supplement tablets were purchased from a local store and were ground into a powder and extracted with iso-octane. The supernatant was filtered with a 0.45- μ m PTFE syringe filter and diluted before injection.

Conditions

Column:

UPC² conditions

System: ACQUITY UPC²

with ACQUITY UPC²

PDA Detector

Software: Empower 3

Detection: UV at 243 nm

(compensation reference 400 to 500 nm, res. 6 nm)

ACQUITY UPC² HSS C₁₈ SB

· ·

3.0 x 100 mm, 1.8 μm

Column temp.: $50 \,^{\circ}\text{C}$ Sample temp.: $10 \,^{\circ}\text{C}$

Injection volume: 20 µL (Full loop)

Flow rate: 3.00 mL/min
Mobile phase A: Compressed CO₂

Mobile phase B: Acetonitrile/methanol

mixture (50/50 v/v)

Run time: 4 min
ABPR pressure: 1500 psi

Gradient: 0.5% B for 2 min,

ramp to 20% B in 1.5 min,

hold at 20% B for 0.5 min

RESULTS AND DISCUSSION

Vitamin K₁ cis and trans isomers and MK-4 were baseline separated in less than three minutes by UPC^2 using a single UPC^2 HSS C_{18} SB Column (3.0 x 100 mm, 1.8 µm). The cis form eluted first, followed by the trans form, then the MK-4, as shown in Figure 2. The USP resolution between the critical pair, the cis- and the trans-K₁, was 1.7 (Table 1). In the gradient program, the initial two-minute isocratic elution at 0.5% B was necessary for the baseline separation of the cisand the trans-vitamin K₁. Precise control of the mobile phase B delivery volume at 0.5% is critical for the critical pair separation. The ACQUITY UPC² System is the only SFC system on the market that can provide this level of precision control. Following the isocratic hold, a generic gradient from 0.5% to 20% B was used in the study. This gradient range could be modified in applications depending on the retention of the actual vitamin K₂ homologues of interest. MK-4 was included in this study because it is a common form of vitamin K_2 , and it is structurally the closest vitamin K_2 to K_1 . Other forms of vitamin K_2 , such as MK-7, have longer side chains, and tend to be retained longer at column. They can therefore be easily separated from vitamin K₁. The total run time was four minutes, which was at least five times faster than the typical run time for HPLC methods using C_{30} columns. The organic solvent consumption was less than 1 mL per injection, which is only a fraction of the typical 15 to 30 mL of solvent used in LC methods.

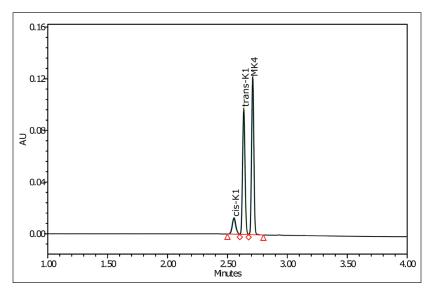


Figure 2. Chromatogram overlay of vitamin K_1 , isomers and MK-4 standard mixture (n=10).

	RT	RT Peak area			Resolution
	(min)	RTRSD	RSD	Resolution	RSD
cis-vitamin K1	2.553	0.08%	0.6%	-	_
trans-vitamin K1	2.636	0.05%	0.2%	1.7	1.1%
MK-4	2.710	0.05%	0.2%	2.0	0.9%

Table 1. Results of replicate analysis of vitamin K standard mixture (n=10).

Ten replicate analyses of a standard mixture demonstrated excellent repeatability (Table 1). The limits of quantitation (LOQ), estimated at a signal-to-noise ratio at 10, were 0.06, 0.06, and 0.04 μ g/mL for the *cis*-vitamin K₁, the *trans*-vitamin K₁ and the MK-4, respectively (Table 2). Excellent linearity (R²>0.998) was obtained for these compounds (Table 2). Analysis of a commercial vitamin K supplement product also showed excellent repeatability and resolution (Figure 3). In this product, the *cis*-K₁ was found to account for 11.2% of the total vitamin K₁ (Table 3).

Parameters	cis -vitamin K_1	trans-vitamin K ₁	MK-4
Range (µg/mL)	0.03 to 1.5	0.02 to 8.5	0.02 to 10
Regression (R ²)	0.9980	0.9997	0.9999
Slopes (mV sec mL/μg)	17.7	16.3	16.0
LOQ (µg/mL)	0.06	0.06	0.04

Table 2. LOQ and linearity.

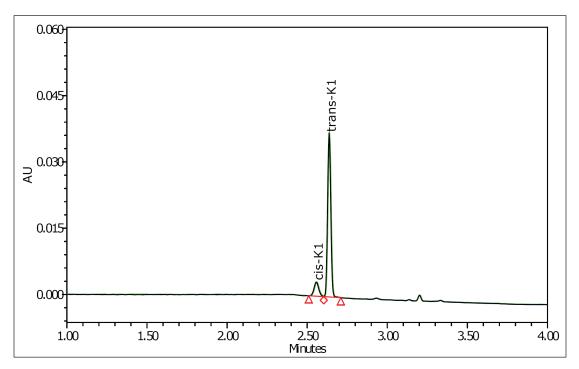


Figure 3. Chromatogram overlay of replicate analysis of vitamin K tablet (n=3).

	RT		Conc.		
	Mean	RSD	Mean	RSD	% of total K_1
	(Min)	(%)	(μg/mL)	(%)	Conc.
cis-vitamin K ₁	2.558	0.09	0.38	2.1	11.2
trans-vitamin K ₁	2.638	0.06	3.20	0.3	88.8

Table 3. Results of replicate analysis of vitamin K supplement tablet (n=3).

CONCLUSIONS

UPC 2 Technology enables a rapid separation of the cis- and the trans-vitamin K_1 isomers and MK-4 on an ACQUITY UPC 2 HSS C_{18} SB Column in less than three minutes. The analysis time is at least five times faster than the current available HPLC methods, and no special C_{30} column is needed. This UPC 2 method has excellent separation selectivity, resolution, sensitivity, repeatability, and it uses much less solvent than HPLC methods. UPC 2 can potentially be used by food ingredient testing labs for routine vitamin K analysis with significant increases in throughput and decreases in operating cost.

References

- AOAC Official Method 999.15 Vitamin K in milk and infant formulas liquid chromatographic method. AOAC International. 2005.
- Woollard DC, Indyk HE, Fong BY, Cook KK. Determination of vitamin K₁ isomers in foods by liquid chromatography with C₃₀ bonded-phase column. J AOAC International 85(3):682-691. 2002.
- Huang B, Zheng F, Fu S, Yao J, Tao B, Ren Y. UPLC-ESI-MS/MS for determining trans- and cis-vitamin K₁ in infant formulas: method and applications. Eur Food Res Technol.;235(5):873-879. Nov. 2012.
- Aubin A. Analysis of fat-soluble vitamin capsules using UltraPerformance Convergence Chromatography. Waters Application Note No. 720004394en. June, 2012.

Waters

THE SCIENCE OF WHAT'S POSSIBLE.®

Waters, UPC? Empower, and The Science of What's Possible are registered trademarks of Waters Corporation. UltraPerformance Convergence Chromatography is a trademark of Waters Corporation. All other trademarks are the property of their respective owners.

©2014 Waters Corporation. Produced in the U.S.A. February 2014 720004937EN AG-PDF

Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990

www.waters.com