THE SCIENCE OF WHAT'S POSSIBLE.

Targeted Lipidomics of Oxylipins (Oxygenated Fatty Acids)

Katrin Strassburg,^{1,2} Billy Joe Molloy,⁵ Claude Mallet,³ André Duesterloh,⁴ Igor Bendik,⁴ Thomas Hankemeier,^{1,2} James Langridge,⁵ Rob J. Vreeken,^{1,2} Giuseppe Astarita³

¹Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands; ²Netherlands Metabolomics Centre, Leiden University, Leiden, The Netherlands; ³Waters Corporation, Milford, MA, USA; ⁴DSM Nutritional Products Europe Ltd., Switzerland; ⁵Waters Corporation, Wilmslow, UK

APPLICATION BENEFITS

Here, we present a high-throughput approach for profiling bioactive oxylipins (oxidized fatty acids) in plasma. The combination of mixed mode solid-phase extraction (Oasis® MAX SPE) and UPLC®-ESI-MRM mass spectrometry (Xevo[®] TO-S) provides a comprehensive analysis of oxylipins in a targeted analytical workflow. Retention times and transitions of 107 oxylipins (including prostaglandins, prostacyclines, thromboxanes, dihydroprostaglandins, and isoprostanes) were annotated for routine high-throughput analysis of plasma samples. Considering the prominent roles played by oxylipins in health and disease (e.q., inflammation), such a UPLC-based assay could become important in nutritional research, clinical research, and drug discovery and development.

WATERS SOLUTIONS

Xevo TQ-S Mass Spectrometer

Oasis MAX SPE Cartridges

TargetLynx[™] Application Manager

KEY WORDS

UPLC-MS/MS, fatty acids, metabolomics, lipidomics, triple quadrupole, oxylipins, multiple reaction monitoring, MRM, Xevo TQ-S

INTRODUCTION

Oxylipins are signaling lipids that play prominent roles in the physiological regulation of many key biological processes, such as the relaxation and contraction of smooth muscle tissue, blood coagulation, and most notably inflammation. Alterations in oxylipin pathways have been associated with response to cardiovascular diseases, host defense, tissue injury and surgical intervention. The ability to semi-quantitatively profile a wide range of oxylipin in plasma samples could help our understanding of their roles in health and disease, as well as serve as biomarkers for disease diagnosis or prognosis.

Oxylipins are produced via enzymatic (e.g., mono- or dioxygenase-catalyzed) or non enzymatic oxygenation of an array of both omega-6 polyunsaturated fatty acid substrates (e.g., linoleic acid, dihomo-γ-linolenic acid, adrenic acid and arachidonic acid) and omega-3 polyunsaturated fatty acid substrates (α-linolenic acid, acid, eicosapentaenoic acid, and docosahexaenoic acid) (Figure 1A and 1B). Three major enzymatic pathways are involved in their generation: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP). These pathways are important drug targets for multiple diseases (Figure 1A and 1B).

The main challenge for the measurement of oxylipins is the extremely low endogenous concentration of such lipid species and their limited stability. Furthermore, oxylipins are not stored in tissues but are formed on demand by liberation of precursor fatty acids from esterified forms. Lastly, the same fatty acid can be oxidized in different positions of its acyl chain leading to many isomeric species, each with specific metabolic actions. As a consequence, this requires a rapid, highly-sensitive, and specific analytical method.

Historically, measurements of oxylipins have been performed using radiometric and enzymatic immunoassays, which often lacked specificity and targeted only few compounds. GC-MS methodology has also been used, but this still requires multi-step procedures involving derivatization of the oxylipins to increase their volatility and stability. Recently, various LC-MS methodologies have been described to monitor a broad range of low abundance oxylipins.¹⁻⁵ In particular the method by Strassburg et al.² reports on a wide range of oxylipins produced both enzymatically and non-enzymatically in human plasma. Although such methods are both sensitive and specific, there is an increasing demand for a comprehensive and high-throughput screening method to enable wide-ranging lipidomic studies.

Here we report a high-throughput assay for the profiling of over 100 oxylipins, including prostaglandins, prostacyclines, thromboxanes, dihydroprostaglandins, and isoprostanes, in plasma samples.

Internal standard	Cayman #number	MRM transition	RT	Cone voltage	Collision energy
			(min)	(V)	(eV)
d4-6-Keto PGF1α	315210	373.20 >167.20	2.28	35	15
d4-TBX2	319030	373.20 >173.10	2.86	35	15
d4-PGF2α	316010	357.30 >197.20	3.12	35	20
d4-PGE2	314010	355.20 >275.20	3.19	40	16
d4-PGD2	312010	355.20 >275.20	3.31	10	16
d5-LTE4	10007858	443.10 >338.00	4.11	35	20
d4-LTB4	320110	339.20 >197.10	4.48	35	15
d4-12,13-DiHOME	10009994	317.30 >185.20	4.56	35	15
d4-9,10-DiHOME	10009993	317.30 >203.20	4.69	35	15
d11-14,15-DiHETrE	10008040	348.30 >207.10	4.77	35	15
d4-15-deoxy-Δ12,14-PGJ2	318570	319.20 >275.30	5.20	35	15
d6-20-HETE	390030	325.20 >281.10	5.24	20	18
d4-9-HODE	338410	299.20 >172.10	5.53	35	20
d8-12-HETE	334570	327.30 >184.20	5.78	35	20
d8-5-HETE	334230	327.30 >116.10	5.97	35	20

Table 1. Internal standards used for profiling natural oxylipins in plasma and optimal UPLC-ESI-MS settings.

EXPERIMENTAL

Sample preparation

Materials

All chemicals were purchased from Sigma-Aldrich (Germany) and were of analytical grade or higher purity. Oxylipins standards were purchased from Cayman Chemicals (Ann Arbor, MI), Biomol (Plymouth Meeting, PA), and Larodan (Malmö, Sweden). For mixed mode solid phase extraction we used Waters Oasis MAX 3 cc Vac Cartridge, 60 mg Sorbent per Cartridge, 30 µm Particle Size (p/n 186000367). An internal standard mixture containing 16 isotopically labeled compounds was used (Table 1).

Sample pre-treatment

(dilution, performed in borosilicate glass tubes 13 x 100 mm):

- 1. Add 200 μL of 10% glycerol in water to a glass tube
- Add 50 250 μL of plasma (maximum sample volume available) sample to the tube and mix thoroughly
- 3. Add 5 µL of 10 mg/mL BHT in ethanol and mix thoroughly
- 4. Add 5 μ L of internal standard solution (400 ng/mL) and mix
- Make up the total sample volume to 3 mL with 25% MeCN(aq) and mix thoroughly

MAX mixed mode solid phase extraction

- 1. Condition Oasis MAX SPE Cartridge with 3 mL of MeCN
- Condition Oasis MAX SPE Cartridge with 3 mL of 25% MeCN(aq)
- Load the entire pre-treated sample onto the Oasis MAX SPE Cartridge
- 4. Wash Oasis MAX SPE Cartridge with 3 mL of 25% MeCN(aq)
- 5. Wash Oasis MAX SPE Cartridge with 3 mL of MeCN
- 6. Elute analytes with 1.3 mL of 1% Formic in MeCN8*
- Transfer eluate to a glass HPLC vial (TruView[™] Max Recovery Vial)
- Evaporate eluate down until only the glycerol remains (under nitrogen at 40 °C)
- 9. Add 60 μL of 50/50 MeOH/MeCN and mix thoroughly

10. Inject 3 µL onto the UPLC-MS/MS System

*Sample eluted into a glass tube containing 200 μ L of 10% glycerol in methanol

UPLC conditions				
System:	ACQUIT in negat	Y UPLC® S ive ESI mo	System ode	
Column:	ACQUIT 2.1 x 10	Y UPLC BE 0 mm	EH C _{18,} 1	l.7 μm,
Mobile phase A:	$H_2^0 + 0$.1% acetic	acid	
Mobile phase B:	ACN/IPA	(90/10	/v)	
Flow rate:	0.6 mL/	min		
Column temp.:	40 °C			
Volume:	3.0 µL			
Elution gradient:	<u>Min</u> 0.0 1.0 8.0	<u>A%</u> 75 75 5	<u>B%</u> 25 25 95	<u>Curve</u> 6 6
	8.50	5	95	6
	8.51	75	25	6
	10.00	15	25	b

MS conditions

For optimum reproducibility of retention times we recommend the following tubing to connect UPLC analytical column to ESI probe: PEEK Tubing, 1/16 in. (1.6 mm) O.D. X 0.004 in. (0.100 mm) I.D. X 5 ft (1.5 m) length, cut to 400 mm in length.

MS system:	Xevo TQ-S in negative ESI mode
Acquisition mode:	MRM
Capillary voltage:	2.5 kV
Cone voltage:	10-40 V (compound Specific, default = 35 V)
Source temp.:	150 °C
Desolvation gas temp.:	600 °C
Desolvation gas flow:	1000 L/h
Cone gas flow:	150 L/h
Collision energy:	15-20 V
	(compound Specific, default = 15 V)

Data management

TargetLynx Application Manager

RESULTS AND DISCUSSION

The primary focus of this work was to provide a high-throughput method to profile bioactive oxylipins in plasma samples.

Figure 1. A. Schematic outline of the oxylipins of the omega-6 series produced by linoleic acid C_{18} :2 (LA), dihomo- γ -linoleic acid C20:3 (DHGLA), and arachidonic acid C20:4 (AA), via the cyclooxygenase (COX), lipoxygenase (LOX), CYP-450, or free radical catalyzed pathways.

B. Schematic outline of the oxylipins of the omega-3 series produced by α-linolenic acid C₁₈:3 (ALA), eicosapentaenoic acid C20:5 (EPA), and docosahexaenoic acid C22:6 (DHA), via the COX, LOX, CYP-450, or free radical catalyzed pathways.

Abbreviations: dihydroxyeicosatetraenoic acid (DiHETE), epoxyoctadecenoic acid (EpOME), hydroxy-eicosatrienoic acid (HETrE), hydroxyeicosatetraenoic acid (HETE), hydroxy-heptadecatrienoic acid (HHTrE), hydroxyoctadecadienoic acid (HODE), hydroxyeicosapentaenoic acid (HEPE), oxo-eicosatetraenoic acid (KETE), oxo-octadecadienoic acid (KODE), prostaglandin (PG), thromboxane (TX).

4

1 Tetranor-PGFM 329.2 311.2 0.48 (d4)PGF2α AA Prostanoid 2 Tetranor-PGEM 327.1 309.2 0.53 (d4)PGE2 AA Prostanoid	COX COX
2 Tetranor-PGEM 327.1 309.2 0.53 (d4)PGE2 AA Prostanoid	COX
	601
3 20-hydroxy PGE2 367.2 287.2 1.01 (d4) PGE2 AA Prostanoid	LUX
4 Δ17-6-keto PGF1α 367.2 163.1 1.76 (d4) 6-keto PGF1α AA Prostanoid	COX
5 6-keto PGF1α 369.2 163.1 2.27 (d4) 6-keto PGF1α AA Prostanoid	COX
6 2,3-dinor-11b PGF2α 325.2 145.1 2.27 (d4) PGF2α AA Prostanoid	COX
7 (d4) 6-keto PGF1α 373.2 167.2 2.28 ISTD	
8 20-carboxy LTB4 365.2 347.2 2.35 (d4) LTB4 AA Leukotriene	LOX
9 6-keto PGE1 367.2 143.1 2.37 (d4) PGE2 AA Prostanoid	COX
10 20-hydroxy LTB4 351.2 195.1 2.46 (d4) LTB4 AA Leukotriene	LOX
11 TXB3 367.2 169.1 2.48 (d4) TXB2 EPA Thromboxane	COX
12 PGF3α 351.2 193.2 2.75 (d4)PGF2α EPA Prostanoid	COX
13 TXB1 371.2 171.1 2.79 (d4) TXB2 DGLA Thromboxane	СОХ
14 PGE3 349.2 269.2 2.83 (d4)PGE2 EPA Prostanoid	COX
15 (d4) TXB2 373.2 173.1 2.86 ISTD	
16 8-iso PGF2α 353.2 193.2 2.87 (d4) PGF2α AA Isoprostane	non enzymatic
17 TXB2 369.2 169.1 2.88 (d4) TXB2 AA Thromboxane	COX
18 PGD3 349.2 269.2 2.92 (d4) PGD2 EPA Prostanoid	COX
19 11β-PGF2α 353.2 193.2 2.93 (d4) PGF2α AA Prostanoid	COX
20 (+/-) 5-iPF2α-VI 353.2 115.1 3.04 (d4) PGF2α AA Isoprostane	non enzymatic
21 9,12,13-TriHOME 329.2 211.2 3.07 (d4) 9(S)-HODE LA Triol	LOX
22 9,10,13-TriHOME 329.2 171.1 3.12 (d4) 9(S)-HODE LA Triol	LOX
23 (d4) PGF2α 357.3 197.2 3.12 ISTD	
24 PGF2α 353.2 193.2 3.14 (d4)PGF2α AA Prostanoid	COX
25 PGF1α 355.2 293.2 3.14 (d4)PGF2α DGLA Prostanoid	COX
26 (d4) PGE2 355.2 275.2 3.19 ISTD	
27 PGE2 351.2 271.2 3.2 (d4)PGE2 AA Prostanoid	COX
28 11β-PGE2 351.2 271.2 3.25 (d4)PGE2 AA Prostanoid	COX
29 PGK2 349.2 205.1 3.28 (d4) PGE2 AA Prostanoid	COX
30 15-keto PGF2α 351.2 219.1 3.28 (d4) PGF2α AA Prostanoid	COX
31 5(S),14(R)-Lipoxin B4 351.2 221.2 3.29 (d4) LTB4 AA Lipoxin	LOX
32 PGE1 353.2 273.2 3.29 (d4) PGE2 DGLA Prostanoid	COX
33 (d4)PGD2 355.2 275.2 3.31 ISTD	
34 PGD2 351.2 271.2 3.32 (d4) PGD2 AA Prostanoid	COX
35 PGD1 353.2 273.2 3.32 (d4)PGD2 DGLA Prostanoid	COX
36 11β-13,14-dihydro-15-keto 353.2 113.2 3.35 (d4)PGF2α AA Prostanoid PGF2α	COX
37 15-keto PGF1α 353.2 221.1 3.37 (d4) 6-keto PGF1α DGLA Prostanoid	COX
38 13,14-dihydro PGF2α 355.2 275.2 3.39 (d4) PGF2α AA Prostanoid	COX
39 13,14-dihydro-15-keto PGE2 351.2 175.2 3.54 (d4) PGE2 AA Prostanoid	COX
40 13,14-dihydro-15-keto PGF2α 353.2 183.1 3.56 (d4) PGF2α AA Prostanoid	СОХ
41 5(S),6(R)-Lipoxin A4 351.2 115.1 3.58 (d4) LTB4 AA Lipoxin	LOX
42 5(S),6(S)-Lipoxin A4 351.2 115.1 3.68 (d4) LTB4 AA Lipoxin	LOX
43 13,14-dihydro-15-keto PGF1α 355.2 193.2 3.72 (d4) PGF2α AA Prostanoid	COX
44 13,14-dihydro-15-keto PGD2 351.2 175.2 3.77 (d4) PGD2 AA Prostanoid	СОХ

	Compound name	M1	M2	RT	I	Precursor	Class	Pathway
45	1α,1b-dihomo PGF2α	381.3	337.2	3.77	(d4)PGF2α	ADA	Prostanoid	СОХ
46	14,15-LTE4	438.2	333.2	3.78	(d3) LTE4	AA	Leukotriene	LOX
47	LTD4	495.2	177.1	3.9	(d3) LTE4	AA	Leukotriene	LOX
48	Resolvin D1	375.2	141	3.9	(d11) 14,15-DiHETrE	DHA	rRsolving	LOX
49	Resolvin E1	349.2	195	3.9	(d11) 14,15-DiHETrE	EPA	Resolving	LOX
50	13,14-dihydro-15-keto PGD1	353.2	209.1	3.91	(d4) PGD2	AA	Prostanoid	СОХ
51	PGA2	333.2	271.2	3.91	(d4)PGE2	AA	Prostanoid	СОХ
52	Δ12-PGJ2	333.2	233.1	3.97	(d4) 15-deoxy-∆12,14-PGJ2	AA	Prostanoid	COX
53	PGJ2	333.2	233.1	3.97	(d4)PGD2	AA	Prostanoid	СОХ
54	LTB5	333.2	195.1	4.03	(d4) LTB4	EPA	Leukotriene	LOX
55	11-trans LTD4	495.2	177.1	4.05	(d3) LTE4	AA	Leukotriene	LOX
56	(d3) LTE4	441.2	336.2	4.12	ISTD			
57	LTE4	438.2	333.2	4.13	(d3) LTE4	AA	Leukotriene	LOX
58	8(S),15(S)-DiHETE	335.2	235.2	4.23	(d4) LTB4	AA	Diol	CYP450
59	12,13-DiHODE	311.2	293	4.23	(d4) 9,10-DiHOME	ALA	Diol	CYP450
60	bicyclo-PGE2	333.2	113.2	4.25	(d4) PGE2	AA	Prostanoid	CYP450
61	11-trans LTE4	438.2	333.2	4.26	(d3) LTE4	AA	Leukotriene	LOX
62	10(S),17(S)-DiHDoHE	359.2	153.2	4.34	(d8) 12(S)-HETE	DHA	Protectin	LOX
63	Neuroprotectin D1	359.2	206	4.34	(d8) 12(S)-HETE	DHA	Protectin	LOX
64	17,18-DiHETE	335.2	247.2	4.34	(d11) 14,15-DiHETrE	EPA	Diol	CYP450
65	5(S),15(S)-DiHETE	335.2	115.2	4.37	(d4) LTB4	AA	Diol	CYP450
66	6-trans-LTB4	335.2	195.1	4.4	(d4) LTB4	AA	Leukotriene	LOX
67	14,15-DiHETE	335.2	207.1	4.46	(d11) 14,15-DiHETrE	EPA	Diol	CYP450
68	(d4) LTB4	339.2	197.1	4.48	ISTD			
69	15-deoxy-∆12,14-PGD2	333.2	271.2	4.49	(d4) 15-deoxy-∆12,14-PGJ2	AA	Prostanoid	СОХ
70	Hepoxilin A3	335.2	273.2	4.5	(d8) 12(S)-HETE	AA	Hepoxilin	LOX
71	LTB4	335.2	195.1	4.5	(d4) LTB4	AA	Leukotriene	LOX
72	(d4)(±)12,13-DiHOME	317.3	185.2	4.56	ISTD			
73	12,13-DiHOME	313.2	183.2	4.58	(d4) 12,13-DiHOME	LA	Diol	CYP450
74	(d4)-(±)9,10-DiHOME	317.3	203.2	4.69	ISTD			
75	9,10-DiHOME	313.2	201.1	4.71	(d4) 9,10-DiHOME	LA	Diol	CYP450
76	(d11) 14,15-DiHETrE	348.3	207.1	4.77	ISTD			
77	19,20-DiHDPA	361.2	273.3	4.79	(d11) 14,15-DiHETrE	DHA	Diol	CYP450
78	14,15-DiHETrE	337.2	207.2	4.8	(d11) 14,15-DiHETrE	AA	Diol	CYP450
79	12S-HHTrE	279.2	179.2	4.84	(d8) 12(S)-HETE	AA	Alcohol	СОХ
80	11,12-DiHETrE	337.2	167.2	4.98	(d11) 14,15-DiHETrE	AA	Diol	CYP450
81	5,6-DiHETrE	337.2	145.1	4.99	(d11) 14,15-DiHETrE	AA	Diol	CYP450
82	9-HOTrE	293.2	171.1	5.07	(d4) 9(S)-HODE	ALA	Alcohol	LOX
83	17(18)-EpETE	317.2	259.2	5.16	(d11) 14,15-DiHETrE	EPA	Epoxide	CYP450
84	(d4) 15-deoxy-∆12,14-PGJ2	319.2	275.3	5.2	ISTD		-	
85	(d6) 20-HETE	325.3	279.2	5.24	ISTD			
86	20-HETE	319.2	289.2	5.25	d6-20-HETE	AA	Alcohol	CYP450
87	15(S)-HEPE	317.2	219.2	5.25	(d8) 5(S)-HETE	EPA	Alcohol	LOX
88	12(S)-HpETE	317.1	153.0	5.34	(d8) 12(S)-HETE	AA	Hydroxyperoxide	LOX

6

	Compound name	M1	M2	RT	I	Precursor	Class	Pathway
89	8,9-DiHETrE	337.2	127	5.35	(d11) 14,15-DiHETrE	AA	Diol	CYP450
90	5(S),6(S)-DiHETE	335.2	115.1	5.35	(d4) LTB4	AA	Diol	CYP450
91	12(S)-HEPE	317.2	179.1	5.35	(d8) 12(S)-HETE	EPA	Alcohol	LOX
92	13-HODE	295.2	195.2	5.5	(d4) 9(S)-HODE	LA	Alcohol	LOX
93	5(S)-HEPE	317.2	115.1	5.51	(d8) 5(S)-HETE	EPA	Alcohol	LOX
94	(d4) 9(S)-HODE	299.2	172.1	5.53	ISTD			
95	9-HODE	295.2	171.1	5.56	(d4) 9(S)-HODE	LA	Alcohol	LOX
96	15-HETE	319.2	219.2	5.62	(d8) 5(S)-HETE	AA	Alcohol	LOX
97	16(17)-EpDPE	343.2	233.2	5.62	(d11) 14,15-DiHETrE	DHA	Epoxide	CYP450
98	13-HpODE	293.1	113.0	5.63	(d4) 9(S)-HODE	LA	Hydroxyperoxide	LOX
99	13-KODE	293.2	113.1	5.64	(d4) 9(S)-HODE	LA	Ketone	LOX
100	17-HDoHE	343.2	281.3	5.67	(d8) 5(S)-HETE	DHA	Alcohol	LOX
101	9-HpODE	293.1	185.0	5.68	(d4) 9(S)-HODE	LA	Hydroxyperoxide	LOX
102	15-HpETE	317.	113.0	5.71	(d8) 5(S)-HETE	AA	Hydroxyperoxide	LOX
103	15-KETE	317.2	113.2	5.72	(d8) 5(S)-HETE	AA	Ketone	LOX
104	11-HETE	319.2	167.1	5.74	(d8) 12(S)-HETE	AA	Alcohol	COX
105	14(15)-EpETE	317.2	207.1	5.74	(d11) 14,15-DiHETrE	EPA	Epoxide	CYP450
106	9-KODE	293.2	185.2	5.77	(d4) 9(S)-HODE	LA	Ketone	LOX
107	(d8) 12(S)-HETE	327.3	184.2	5.78	ISTD			
108	12-HETE	319.2	179.2	5.81	(d8) 12(S)-HETE	AA	Alcohol	LOX
109	8-HETE	319.2	155.1	5.85	(d8) 5(S)-HETE	AA	Alcohol	LOX
110	15(S)-HETrE	321.2	221.2	5.88	(d8) 5(S)-HETE	DGLA	Alcohol	LOX
111	9-HETE	319.2	167.1	5.91	(d8) 12(S)-HETE	AA	Alcohol	non-enzymatic
112	(d8) 5(S)-HETE	327.3	116.1	5.97	ISTD			
113	5-HETE	319.2	115.1	6.00	(d8) 5(S)-HETE	AA	Alcohol	LOX
114	19(20)-EpDPE	343.2	281.3	6.09	(d11) 14,15-DiHETrE	DHA	Epoxide	CYP450
115	12(13)-EpOME	295.2	195.2	6.09	(d4) 12,13-DiHOME	LA	Epoxide	CYP450
116	14(15)-EpETrE	319.2	219.2	6.11	(d11) 14,15-DiHETrE	AA	Epoxide	CYP450
117	5(S)-HpETE	317.1	203.1	6.11	(d8) 5(S)-HETE	AA	Hydroxyperoxide	LOX
118	9(10)-EpOME	295.2	171.2	6.15	(d4) 9,10-DiHOME	LA	Epoxide	CYP450
119	12-KETE	317.2	273.3	6.25	(d8) 12(S)-HETE	AA	Ketone	LOX
120	5-KETE	317.2	203.2	6.26	(d8) 5(S)-HETE	AA	Ketone	LOX
121	11(12)-EpETrE	319.2	167.1	6.27	(d11) 14,15-DiHETrE	AA	Epoxide	CYP450
122	8(9)-EpETrE	319.2	155.1	6.33	(d11) 14,15-DiHETrE	AA	Epoxide	CYP450
123	5(6)-EpETrE	319.2	191.2	6.42	(d11) 14,15-DiHETrE	AA	Epoxide	CYP450

Table 2. List of MRM transitions (M1=precursor; M2= fragment) and retention times (RT) for oxylipins.

Oxylipins are present at very low abundance in biological samples, and as such the quality of sample preparation is an important factor for successful analyses. To eliminate non-lipid contaminants and highly abundant species like phospholipids, we used mixed mode solid-phase extraction (SPE) prior to UPLC-MS analysis. Normalization of the extraction efficiency was achieved by adding stable isotope labeled compounds (internal standards), prior to the extraction procedure (Table 1 and 2, and Figure 2).

Figure 2. Workflow of the sample preparation for the analysis of oxylipins from plasma.

To optimize the chromatographic separation of our analytes, we used a mixture of a wide chemical variety of commercially available oxylipins. Using reversed-phase UPLC (see Experimental), oxylipins eluted in order of decreasing polarity, numbers of double bonds and increasing acyl chain length, allowing the separation of most isomeric and isobaric species (e.g., PGE2 and PGD2) in less than 10 minutes (Figure 3). Using a Xevo TQ-S in negative ESI-mode, retention times and optimal MRM transitions (compound specific precursor \Rightarrow product ion transitions) were determined for all individual oxylipins (Table 2).

To enhance the sensitivity of detection, these MRM transitions were monitored in defined retention time windows, maximizing dwell times by reducing overlapping transitions. In the case of co-eluting metabolites, compound specific precursor ions and their corresponding fragment ions allowed selective profiling of those compounds. Calibration curves for the majority of the analytes were produced and displayed a linear coefficient (Pearson's correlation, R²) higher than 0.99. (Figure 4). Using this UPLC-MS/MS assay, we rapidly profiled 107 oxylipins in human plasma samples (Figure 5).

With minor modifications in the sample preparation protocol, this assay could be extended to the measure of oxylipins in other biological matrices.

Figure 3. Representative UPLC-MS/MS chromatogram of a wide chemical variety of oxylipin species.

Figure 4. Linearity of response for representative endogenous oxylipin species present in the plasma samples.

🗋 🚅 🔚 🍜 🐶 🗸 🔍 💞	🗞 🔲 📖		
Compound List			
77: 19.20-DiHDPA	Licer Defined Properties	Value	
78: 14.15-DiHETrE	Companyed Name		
79: 12S-HHTrE	Compound Name	14,15-DIRETIRE	
80: 11,12-DiHETrE	Acquisition Eurotion Number	1	
81: 5.6-DiHETrE	Overtification Trace	1 PDI	
82: 9-HOTrE	Guantification Trace	BPI	
83: 17(18)-EpETE	Deadleted Detention Time	4 7990	
84; (d4) 15-deoxy-?12,14-PGJ2	Predicted Retention Time	4.7900	
85; (d6) 20-HETE	Retention Time Window (mins) ±	0.4000	
86: 20-HETE	Elistemal Standarda		
87: 15(S)-HEPE	Internal Standards	76: (411) 14 15 DIHET-E	
88: 12(S)-HpETE	Internal Standard, 1	76. (dT) 14,15-DIHETIE	
89: 8.9-DiHETrE	Internal Standard: 2	None	
90: 5(S).6(S)-DIHETE	Internal Standard: 3	None	
91: 12(S)-HEPE	Internal Standard: 4	None	
92: 13-HODE	Internal Standard: 5	None	
93: 5(S)-HEPE	Internal Standard: 6	None	
94: (d4) 9(S)-HODE	I had a bat at a Time of the in backing of the second second		
95: 9-HODE	Update Method Times Using Multiple Samples?	× NO	
96: 15-HETE			
97: 16(17)-EnDPE	Concentration Units	pmole	
98: 13-HpODE	Concentration of Standard: Level	Fixed	
99: 13-KODE	Concentration of Standard	5.0000	
100: 9-HnODE			
ADA AFLIFTE			
Ready			NUMi
🚔 🔲 🏑 🐶 🔝 🔤 🖳 📲 🔂 🗸 🍫 🗸 -	48 - 30 - 150 [[[[[[] [] [] [] [] [] [] [] [] [] [] [0	
		8	
		8	
#/ RT Area E5 Area pmole 1 1 1.79 1347.970 5509.402 0.1 2 2 4.79 1740.344 42235.074 0.2 3 3 4.79 1700.728 42276.734 0.2 4 4.79 2918.798 47795.711 0.3 5 6 4.79 1927.922 442624.172 0.2 6 6 4.79 1302.190 37462.916 0.2 7 7 4.73 1302.190 37462.916 0.2 8 9 4.79 2436.816 430762.916 0.2 9 9 4.79 2436.816 430762.916 0.2 9 9 4.79 2436.816 430762.916 0.2 9 9 4.79 2436.816 430767 0.3 9 10 1.0 4.70 4418.704 48189.777 0.5		3	
XI XI Area Example pmole 1 1 4.79 1347.97 5003.02 0.1 2 2 4.79 1747.97 5003.02 0.1 2 2 4.79 1747.97 5003.02 0.1 2 2 4.79 1747.97 5003.02 0.1 2 2 4.79 1776.721 4405.76.931 0.2 3 4 4.79 1277.927 4405.776.931 0.2 6 6 4.79 1007.927 424.4402.4172 0.2 7 7 4.79 1326.1403.37402.916 0.2 0.2 9 9 4.79 1427.464 32767.957 0.3 0.3 10 10 4.79 4418.784 46169.777 0.5 1	14,15-DIHETREA 79:1347.97;37627	* Endogenous oxylipin	F2:MRM of 4 channels E8- 337 2+207 2 3:837e+004
XI # / R Area Bit Area pmole 1 1 4.79 1.347.970 5.0590.402 0.01 3 3.3 4.79 1.740.728 4.0256.074 0.22 3 3.4 4.79 1.700.728 4.0256.074 0.22 4 4.79 2.916.799 4.7765.711 0.3 0.2 5 5 4.79 1.902.792 4.402.4172 0.2 5 6 4.79 1.902.792 4.023.770 0.2 9 9 4.73 1.328.180 3.7402.316 0.2 9 9 4.73 1.441.046 3.2767.357 0.3 9 9 4.73 1.423.08.618 4.0589.777 0.5 11 MM0086 100 4.62 0.4.73 4.415.784 46189.777 0.5 10 4.62 0.4.73 4.62 0.4.73 4.619.777 0.5 0.5	(d11) 14,15-DIHETIE;478;53009.40;1557414 (d11) 14,15-DIHETIE;478;53009.40;1557414 Interna	Endogenous oxylipin	F2:MRM of 4 channels_E5- 337.2*207- 3.837e+004 F2:MRM of 4 channels E5- 343.3*207 1.580e+008

Figure 5. An example of oxylipin quantification in plasma using TargetLynx, showing the use of a specified retention time, MRM transitions and internal standard for the identification and quantification of a selected oxylipin.

CONCLUSIONS

We have presented a routine high-throughput MRM method to profile over 100 oxylipins in plasma. These targets include a wide array of both pro- and anti-inflammatory lipid mediators. This SPE-UPLC-MRM assay could find applications in basic research to facilitate our understanding of the role of these lipid mediators in health and disease, nutritional research, clinical research, and drug discovery and development.

References

- Lundstrom SL, Saluja R, Adner M, Haeggstrom JZ, Nilsson GP, Wheelock CE. Lipid mediator metabolic profiling demonstrates differences in eicosanoid patterns in Two phenotypically distinct mast cell populations. *J Lipid Res.* 2012 Oct 3. [Epub ahead of print].
- Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A, Berger R, Brenkman A, Hankemeier T, van Duynhoven J, Kalkhoven E, Newman JW, Vreeken RJ. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. *Anal Bioanal Chem.* 2012 Sep;404(5):1413–26.
- Sterz K, Scherer G, Ecker J. A simple and robust UPLC-SRM/MS method to quantify urinary eicosanoids. *J Lipid Res.* 2012 May;53(5):1026–36.
- Nicolaou A, Masoodi M, Mir A. Lipidomic analysis of prostanoids by liquid chromatography-electrospray tandem mass spectrometry. *Methods Mol Biol.* 2009;579:271–86.
- Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomics strategies for oxygenated metabolites of polyunsaturated fatty acids. *Biochim Biophys Acta*. 2014 Dec 5. pii: S1388-1981(14)00251–0.

Waters, The Science of What's Possible, UPLC, Oasis, Xevo, and ACQUITY UPLC are registered trademarks of Waters Corporation. TruView and TargetLynx are trademarks of Waters Corporation. All other trademarks are the property of their respective owners. Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000

F: 1 508 872 1990

www.waters.com

©2015 Waters Corporation. Produced in the U.S.A. March 2015 720004664EN AG-PDF