[应用纪要]

VVATERS THE SCIENCE OF WHAT'S POSSIBLE."

利用超高效合相色谱-质谱(UPC²/MS)对有机发光二极体材料进行分析

Michael D. Jones、Andrew Aubin、Peter J. Lee 及Tim Jenkins 沃特世公司,美国马萨诸塞州米尔福德

应用效益

- 提供一种检测材料纯度的方法
- 与先前公布的液相色谱分析术相
 比,可使运行时间减少为原来的十
 分之一
- 显著减少流动相使用量
 - HPLC的运行成本约为\$1.91,而
 UPC²的运行成本仅为\$0.05
- 可与常用于进行有机发光二极体 (OLED)分析的稀释溶剂及萃取溶 剂兼容

沃特世解决方案

Waters[®] ACQUITY UPC^{2™} 系统 ACQUITY UPC² 色谱柱工具包 ACQUITY UPC² PDA 检测器 ACQUITY[®] SQD Empower[™] 3 CDS 软件

关键词

ACQUITY UPC²、超临界流体色谱术、 精细化工纯、专利保护、稳定性表 示方法(stability indicating methods)、 降解曲线、PhOLED、OLED、Ir (Fppy)₃、 杂质、发光体

引言

有机发光二极体是一种在施加一定电流时会发射出光的薄膜。它们被广泛 地应用在多种电子产品中,例如电视机、手机、电脑显示器、手表、及显 示屏。许多厂商正在不断致力于开发OLED及实现OLED商业化。

在构建OLED器件时,需要高纯度的原材料,从而尽可能地延长发光时间以 及提高最终产品的质量,特别是对于蓝光发射器而言。制造OLED材料需运 用到大量的专利技术,这使得制造出高质量的OLED原材料成为一门利润颇 丰的生意。

专利技术是OLED化学材料领域的主要驱动力,其限制了OLED器件的商品 化,也促成了OLED器件的高制造成本。相关的市场分析报告指出,在未来 五年内,OLED将成为重要的小众市场,预计到2016年市场销售额将达到 500万美元。¹

OLED材料通常是利用多种显微技术来分析。有趣的是,在一些有关分析 OLED磷光发射器稳定性的文献中,应用了到一些基于LC的方法。^{2,3,4}文献中 所记载的许多方法都需要30分钟以上的分析时间。

本应用说明介绍了一种运行时间短且选择性高的方法,该方法应用了超 高效合相色谱(UPC^{2™})-二极管阵列检测器-质谱法来分析一种铱络合物 染料(lr(Fppy)₃)的纯度,铱络合物的结构如下图1所示。lr(Fppy)₃是一 种重要的发光材料,蓝光发光寿命长,被用于制造OLED的部件。同时, 本方法也评估了OLED装置中存在其他添加材料时,本方法对lr(Fppy)₃测 定的专一性。

该UPC²法利用超临界流体色谱(SFC)二氧化碳作为主要流动相,并采用甲醇作为强效溶剂来分离出目标分析物——平面形的金属络合物。

[应用纪要]

实验

样品

标准品储备液的制备方法为:将lr(Fppy)₃溶解在 四氢呋喃中,形成浓度约1.0 mg/mL的溶液。随后 lr(Fppy)₃标准品储备液用四氢呋喃稀释成浓度为0.1 mg/mL的溶液,将该溶液作为分析时的标准品。

方法

杀统:	Waters ALQUITY UPL ²		
色谱柱:	ACQUITY UPC ² BEH 2-EP 3.0 x 100 mm , 1.7 um		
流动相A:	CO ₂		
流动相B:	含2g/L甲酸铵的甲醇溶液		
洗涤溶剂。	70:30甲醇/异丙醇		
分离方法:	梯度:在5分钟内从10%B 过渡至25%B, 保持25%1分钟		
流速:	2.0 mL/min		
CCM 背压:	1885 psi		
柱温:	60°C		
样本温度:	环境温度		
进样量:	2.0 µL		
运行时间:	5.0 分钟		
检测:	ACQUITY UPC ² PDA 3D 通道:200 至410 nm; 20 Hz		
	2D 通道:258 nm @4.8 nm resolution(从500 补偿至 600 nm)		
质谱仪:	ACQUITY SQD		
质谱仪参数设定:	200 至1200 Da; 10,000 Da/sec; ES PosNeg		
补给流量:	无		
数据管理.	Fmpower 3 CDS 软件		

图1 铱络合物(三[2-(2,4-二氟苯基)吡 啶]铱(Ⅲ),称为lr(Fppy)₃)的化学结构

结果与讨论

方法开发

通常的SFC系统会采用一个二级泵在色谱柱后添加富含质子的溶剂(例如 甲酸),从而提高进行MS分析时的电离效率。先前的SFC的电离效率低下 可能是由于流体中的液态CO₂含量太高,从而使得缺少用于电离的质子。 我们在采用UPC²方法时,就是否需要补充流体的必要性进行了评估。

用于进行该种分析的ACQUITY UPC²系统不需要利用一个二级泵补充流体的方 式来提高电离效率。本系统使用一个Upchurch zero volume PEEK 三通来使已经 过UV 检测的流体雾化,然后再进入质谱仪。并且,已确定,在MS 探针入 口处所连接的30 cm 长,内径为0.0025 英寸的PEEK 管在喷射后所产生的背压 足以维持CO₂ 相的超临界状态。

在方法开发时,我们对三种ACQUITY UPC²色谱柱的选择性进行了研究。所用 的三种色谱柱分别采用了专门用于UPC²仪器的UPC² BEH 固定相、UPC² BEH 2-乙基吡啶(2-EP)固定相、及UPC² CSH 氟苯基固定相。注入经降解的lr(Fppy)₃ 样本,进行快速(5分钟)的梯度筛选实验。

根据实验结果,我们发现在用于分离七种未知杂质时,ACQUITY UPC² BEH 2-EP 固定相可提供最高的选择性以及产生最佳的峰形(如图2、3 所示)。 图2、3 中的小图是用于确定这些杂质与lr(Fppy)₃ 之间的关联。MS 数据更增 加了该方法在检测痕量杂质时的灵敏度,例如如图3 所示的在1 至2分钟期 间所检测到的较小的色谱峰。利用MS 对这些痕量杂质进行检测,有利于确 定这些杂质的来源或确定这些杂质与主体物质之间的关联。

[应用纪要]

图2 对一种降解后样本进行分 离时所获得的 $lr(Fppy)_3$ 与杂质 的UV 图谱(UV258 nm 下,从 500nm 补偿至600 nm)。最高 的峰为 $lr(Fppy)_3$ 。其中嵌入的 小图是在 λ max 258.4 nm 下所 获得的 $lr(Fppy)_3$ 的UV 图谱。

图3 对一种降解后样本进行分 离时所获得的lr(Fppy)3 与杂质 的MS ES+总离子图谱(TIC)。 最高的峰为lr(Fppy)3。旁边的 小图是在m/z 基础峰763.9 Da 下所获得的lr(Fppy)3 MS图谱同 位素特征。

杂质鉴定

利用Empower 3 CDS 软件将UV 峰及MS 峰与从3D 数据通道中获得的图谱信息进行整合。利用该软件可在一个数据查看界面中将MS 图谱从UV 峰中抽提出来。

在减去空白进样峰之后,发现共存在七个杂质峰。表1 中已列出了保留时间、UV 图谱、及MS 图谱。其中三种杂质(RT 1.360 min、RT 1.463 min、及RT 1.619 min)与 lr(Fppy)₃ 有相似的UV 光谱图。通过对这七个峰的MS 图谱进行分析,发现这几种物质与 lr(Fppy)₃ 之间存在一种独特的关联。

如图3 所示, lr(Fppy)₃ 的MS 图谱中存在一个独特的同位素比值。而所有七个杂质峰的同位素比值均与lr(Fppy)₃ 近似。在后溶离出 的四个色谱峰中,观察到其中三个的电喷雾负离子结果。负离子信息将有助于进一步对杂质进行鉴别。

[应用纪要]

通常不可能通过但单同位素质量来鉴定未知杂质的结构,然而,在本实验中所发现的杂质具有与母化合物lr(Fppy)₃相类似的同 位素特征。基于所得的MS 信息,推测保留时间为1.94 分钟的未知峰是lr(Fppy)₃ 异构体。保留时间为1.330 min、1.463 min、1.619 min、及2.75 min 的未知峰均表示该化合物在其中一个氟苯环上缺少一个氟原子。保留时间为3.622 min 的未知峰表示该化合物在 其中一个氟苯环上缺少两个氟原子。如图4 所示,保留时间为4.12 min 的峰需要进一步利用MS/MS 测定和精确质量数后再推断其 结构。

保留	时间	紫外光谱	MS ES+ 图谱	MS ES- 图谱
Ir(Fppy) ₃ RT λmax ES+ <i>m/z</i>	1.11 min 258.4 nm 763.9			N/A
ES- m/z	N/A	ana nin nin nin nin nin nin nin nin nin	10 - Marine Hande Hande Hande Hande Hande Hande Hande Hander Hande Hande	
RT λmax ES+ <i>m/z</i> ES- <i>m/z</i>	1.36 min 262.0 nm 745.9 N/A			N/A
RT λmax ES+ <i>m/z</i> ES- <i>m/z</i>	1.46 min 260.8 nm 745.9 N/A			N/A
RT λmax ES+ <i>m/z</i> ES- <i>m/z</i>	1.62 min 260.8 nm 763.9 N/A			N/A
RT	1.94 min		Allefands 201 Million 1 1000 Million 201 M	(2004au 1 - 103 20 20 20 - 2 20 20 20 20 20 20 20 20 20 20 20 20 2
λmax ES+ <i>m/z</i> ES- <i>m/z</i>	234.8 nm 763.9 808.0			
RT	2.75 min		1.51/ha 7.81/101.001/001/001/001/001/001/001/001/00	100/ma1 333 MI fara 3 MI MI WI
λmax ES+ <i>m/z</i> ES- <i>m/z</i>	236.0 nm 746.0 789.9			
RT	3.62 min		All Park 1.82 1 Million 1.82 100 Million	
λmax ES+ <i>m/z</i> ES- <i>m/z</i>	237.2 nm 727.9 N/A			N/A
RT	4.12 min	and the second s	All Phase 1-RE 1-RE Raw 1 - RE Raw 2 - RE Ra	2 100 Area 3, 102 M Kara 3 M Kara 100 KK, Ganara Christer 2004
λmax ES+ <i>m/z</i> ES- <i>m/z</i>	238.4 nm 806.0 850.0			

表1有关保留时间、UV图谱特征、MSES+图谱特征、MSES-图谱特征的列表(若存在)MS图谱特征证实了这几种杂质之间同位素比例特征相似。结合UV图谱可知,这些未知峰与Ir(Fppy)₃结构近似。

图4 在lr(Fppy)₃发光材料样本中所测得的杂质的结构(推断)。

对该方法特异性的研究

利用其他一些在构造OLED 器件所需要用到的主要成分来对该方法的特异性进行研究。所测试混合物含有磷光发 光材料lr(Fppy)₃、空穴传输材料a-NHP、基材TCTA、及空穴阻挡材料/电子传输材料Alq₃。将该混合物进样,发现该 方法可特异性地将三种掺杂的化合物分析鉴定出来,且不会干扰到对发光材料lr[Fppy]₃的检测。通过5 次进样后 测定系统的精度,发现该方法的再现性极佳。(如图5 所示)

图5 分析该方法的特异性及系统的精度。依次列出了在制造0LED 时通常会用到的组分(n=5)。在每一种主要化合物上已标明了保留 时间的%RSD 及峰面积的%RSD。其他杂质峰是与lr(Fppy)₃有关的杂质。

结论

所开发的UPC²/MS 法可在5 分钟内完成对发光材料lr(Fppy)₃ 的纯 度分析,该方法也可被用于表征材料发光的稳定性。利用由 ACQUITY SQD 获得的MS数据,可快速鉴定三种未知的杂质峰。 与先前所报道的LC/MS 相比,本UPC² 法可大幅度的减少运行 时间(为LC/MS 法的1/10)、减少溶剂消耗、且可大幅减少所 浪费的溶剂(LC/MS 法在分析时需采用100%有机溶剂)。本 UPC² 法的选择性高,其特异性远超过其他方法,从而可帮助 化工材料制造商更好地掌握及控制这些不稳定的有机蓝光发 射二极体的性能,以制造出质量更好的OLED 产品,也能够更 好地保护知识产权。

参考文献

- 1 Bcc Research Market Report SMC069B, "Organic Light Emitting Diodes (OLEDs): Technologies and Global Markets" July 2011
- 2 Sivasubramaniam et al, "Investigation of FIrpic in PhOLEDs via LC/MS Technique", Cent. Eur. J. Chemistry, 7(4), (2009), 836-845
- 3 Baranoff et al, "Sublimation Not an Innocent Technique: A Case of Bis-Cyclometalated Iridium Emoitter for OLED", Inorg. Chem, 47, (2008), 6575-6577
- 4 Kondakov, D., Lenhart, W., and Nichols, W., "Operational degradation of organic lightemitting diodes: Mechanism and identi cation of chemical products", J. Appl. Physics, 101, 024512, (2007)

Waters

Waters 和ACQUITY 是沃特世公司的注册商标。 UltraPerformance Convergence Chromatography、UPC²、 ACQUITY UPC²、Empower、及The Science of What's Possible 是沃特世公司的商标。其他所有商标均归 各自的拥有者所有。

©2012 年沃特世公司。于中国印制 2012 年4 月720004305ZH AG-PDF

沃特斯中国有限公司 沃特世科技(上海)有限公司

北京: 010-8586 8899 上海: 021-6879 5888 广州: 020-8626 6678 香港: 852-2964 1800

免费售后服务热线: 800 (400) 820 2676 www.waters.com