

Minimizing the Impact of the Sample Matrix During Routine Pesticide Residue Analysis in Food

Paul Silcock, Gareth Booth, Eleanor Riches, James Morphet, and Peter Hancock Waters Corporation, Manchester, UK

APPLICATION BENEFITS

- Detection of pesticides in complex food matrices using large multi-residue methods to below the required regulatory concentrations.
- Ability to monitor changes in the sample matrix between samples and batches.
- Reduction of matrix concentration to minimize matrix effects while maintaining detection.

WATERS SOLUTIONS

Xevo[™] TQ-S System

ACQUITY UPLC® System

DisQuE™

Quanpedia™

 $RADAR^{TM}$

KEYWORDS:

Pesticide residues, matrix effects, complex matrix, food testing, herbs, spices One of the biggest challenges in ensuring the safety of our food supplies is the measurement of hazardous ultra trace level components in the presence of a highly complex sample matrix. For the analysis of pesticides in food matrices, increased use of liquid chromatography systems, coupled with tandem quadrupole mass spectrometers has allowed progress in reducing the problems caused by the sample matrix. However, difficulties remain when trying to discriminate against matrix components that exhibit similar physiochemical properties. Unawareness of these difficulties in each unique sample can lead to poor quality results, and can impact a laboratory's performance and reputation.

Understanding the matrix challenge of each injected sample is clearly beneficial as is the ability to monitor changes in the sample matrix between samples and batches. This capability can lead to the continuous improvement of analytical quality in the laboratory. Conventional LC tandem quadrupole systems do not allow the direct monitoring of the sample matrix during high sensitivity MRM quantitation and it is only recently with the newest generation of instruments that this has become possible.

Problems caused by the sample matrix can include disruption to chromatography, increased chemical noise, and most notably, ionization suppression. ¹⁻⁴ In highly complex matrices such as herbs and spices, these problems can be found in combination to make determination of pesticide residue concentration very difficult.

In addition to problems caused by the sample matrix, there are also pesticides that, by nature, are more difficult to analyze using LC/MS/MS due to a poor (relative) response factor. Successful analysis of these compounds to the regulatory concentration limits is difficult when considering the practicality of increasing sample amount and the balance of extracted matrix concentration. A much more practical solution is to use increased instrument sensitivity to maximize performance at these required concentrations. Also, if enough sensitivity is available, then the reduction of matrix concentration injected onto the system becomes possible.

Described here is the application of ultra sensitive detection to minimize the impact of matrix effects during analysis of 81 pesticide residues in a range of food products. Also described is the use of a novel MRM acquisition mode that allows direct monitoring of the matrix background in each sample injected.

EXPERIMENTAL

Waters DisQuE (EN 15662:2008) Extraction Kit (QuEChERS) was used to prepare spiked extracts of grape, avocado, marjoram, and ginger. Sample matrix concentrations were 1g/mL for grape and avocado and 0.1 g/mL for marjoram and ginger. The final acetonitrile extracts from QuEChERS were diluted 10x into mobile phase and 10 μ L were injected onto the analytical system (referred to as original sample). Subsequent dilutions of this were then made to reduce matrix effects.

LC conditions

LC system : ACQUITY UPLC

Column: ACQUITY® BEH C₁₈

100 mm x 2.1 mm, 1.7 μm

Mobile phase A: 0.1% HCOOH in H₂O

Mobile phase B: 0.1% HCOOH in MeOH

UPLC gradient:

Time (min)	Flow (mL/Min)	%A	%B
	0.5	90	10
0.25	0.5	90	10
7.75	0.5	2	98
8.5	0.5	2	98
8.51	0.5	90	10

Run time: 10.00 min

MS conditions

MS system	Xevo TQ-S
lonization mode:	ES positive

Capillary voltage: 0.60 kV

Source temp: 130 °C

Desolvation temp: 650 °C

Cone gas flow: 150 L/hr

Desolvation gas flow 1200 L/hr

Mass spectrometer acquisition

Quanpedia™ generated MRM parameters (a full MRM list can be found in Appendix 1) were used as the basis of RADAR-enabled mass spectrometer acquisition method. RADAR is an information-rich acquisition approach that allows measurement of target analytes with precision in MRM mode, while simultaneously scanning the background for all other components.

Figure 1 shows a RADAR-enabled mass spectrometer acquisition method with time scheduled MRMs for target pesticides and a simultaneous full scan (MS2) acquisition.

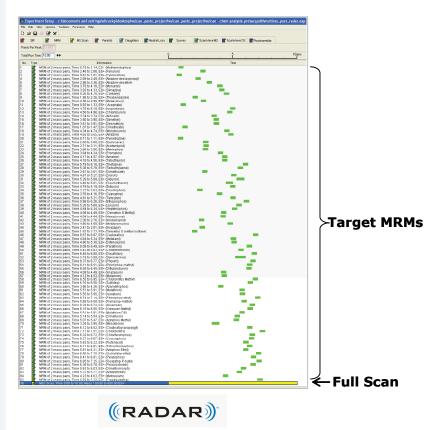


Figure 1. Mass spectrometer experiment showing RADAR acquisition mode.

RESULTS AND DISCUSSION

Detection to below regulatory limits

European Union (EU) regulations to control pesticide exposure from food consumption are among the toughest in the world. In order to import food and food commodities into Europe, the level of pesticide contamination must be below the stated maximum residue limits (MRLs) for that product.⁵ Confirmation of positive results requires good quantitative performance well below these concentrations, which can be very challenging in more complex matrices.

Figure 2 shows a selection of extracted MRM chromatograms for pesticides spiked into avocado at 0.005 mg/kg. Quantitative and confirmatory transitions are both detected at this level, which is 10x below the European MRL (except zoxamide, which is 4x below). This includes parathion, which has a relatively poor response factor when analyzed using electrospray ionization. Comfortable quantitation of pesticides at these low concentrations allows high confidence when reporting results around maximum residue limits.

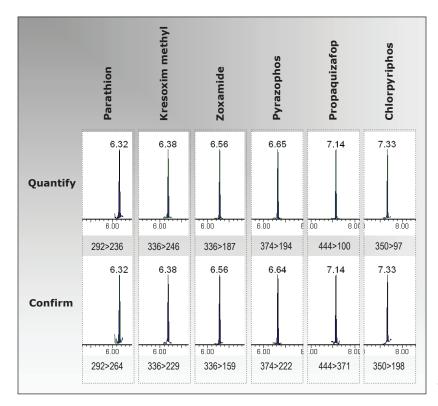


Figure 2. Quantitative and confirmatory MRM transitions for pesticides spiked into avocado at 0.005 mg/kg.

Monitoring matrix complexity

Each sample analyzed had full scan data available along with the MS/MS data. This was due to the RADAR functionality of the Xevo TQ-S being enabled. These data were used to monitor the complexity of the sample matrix background in each sample.

Differences in the co-extracted background for grape, avocado, marjoram, and ginger were observed by plotting the base peak intensity (BPI) chromatogram. For ginger and marjoram, 10x less sample was extracted using QuEChERS to give a 0.1 g/mL matrix, as opposed to the usual 1 g/mL matrix for grape and avocado. This is due to the extremely high complexity of the sample matrix, as well as to aid extraction of these drier samples. Figure 3 shows base peak intensity (BPI) chromatograms overlaid with MRM chromatograms for pesticides spiked at 1.0 x 10⁵ g/kg for each matrix.

Despite the reduction in matrix concentration, the ionizable background is high in marjoram and ginger samples, compared with grape and avocado; as a consequence, the likelihood for analyte ion suppression (and enhancement) may be higher for these types of samples.

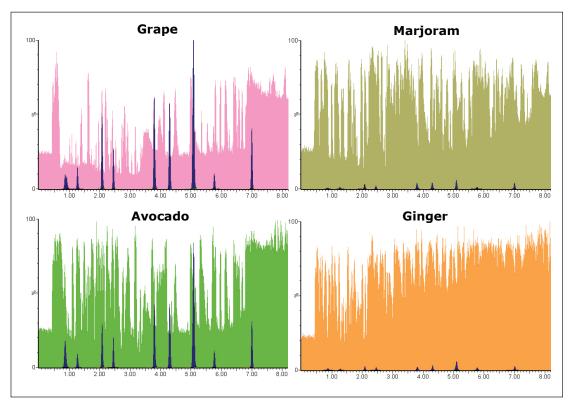


Figure 3. BPI chromatograms overlaid with MRM chromatograms for pesticides spiked at 0.01 mg/kg into grape (1.0 g/mL matrix), avocado (1.0 g/mL), marjoram (0.1 g/mL), and ginger (0.1 g/mL).

With simultaneous full scan it is also possible to observe specific components that co-elute with target analytes. Figure 4 shows BPI and MRM mass chromatograms for a grape sample spiked with dimethoate at 0.01 mg/kg. Full scan spectra from the elution region of dimethoate were combined and the most intense ion from the mass spectrum extracted into another chromatogram (XIC), revealing a discrete peak that co-elutes with dimethoate, as shown in Figure 4.

If significant problems are observed with this or any other components in the matrix, the ability to observe them allows for further investigation and necessary remedial action to be carried out. Also, this acquisition mode can help to track the clean-up efficiency of the methodology employed.

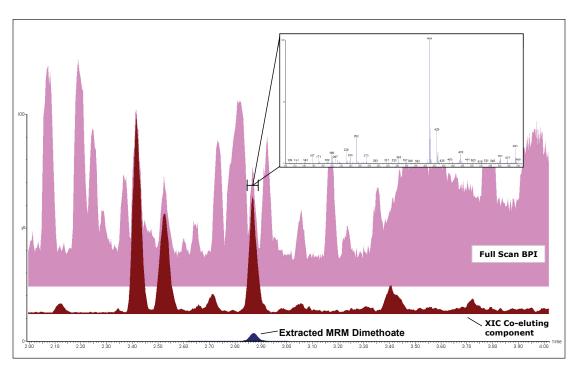


Figure 4. RADAR full scan BPI and MRM mass chromatograms for a grape sample spiked with dimethoate at 0.01 mg/kg. Also shown is the extracted ion chromatogram (XIC) of the co-eluting component with the subtracted mass spectrum inset.

Reduction of matrix effects

Minimizing matrix effects allows higher confidence in the quality of analytical data obtained. Reducing matrix concentration injected onto the analytical system is a simple and effective means to do this. When using a standard flow ESI source this can be achieved by reducing the amount of sample to be extracted, reducing the number of sample enrichment steps, or diluting final extracts. In any case, this is only a possibility if enough sensitivity is available to maintain detection at the required concentrations.

Ginger samples showed the highest ionizable background when compared to all other samples, despite having a relatively low matrix concentration (0.1 g/mL), as shown in Figure 3. Matrix effects were observed in the ginger samples with ion suppression and chromatography problems most apparent.

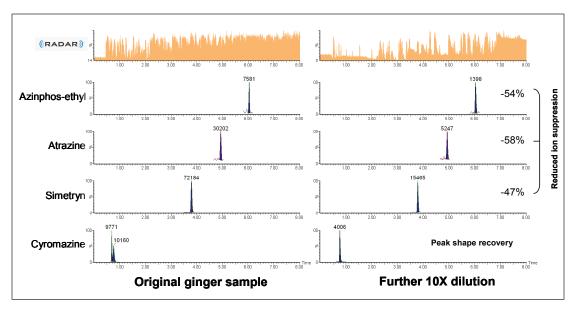


Figure 5. Effects of reducing sample matrix concentration by dilution for ginger. The full scan RADAR background is shown in the top chromatogram with MRM chromatograms for a selection of pesticides below.

Diluting the ginger extracts 10x allowed recovery of distorted peak shape for cyromazine and reduction in matrix suppression for a number of pesticides, as shown in Figure 5. Table 2 shows reduction of ion suppression with a 10x dilution of sample. This reduction in suppression is clear when comparing peak area of pesticides in ginger to standards with no matrix present. As the matrix concentration is reduced the peak area response begins to correlate closely with standard peak areas.

	% Peak area recovery to standard		
	Original Extract	Diluted Extract	
Thiabendazole	89.2	105.2	
Atrazine-desisopropyl	71.6	100.8	
Aldicarb	36.4	91.2	
Desmetryn	49.2	97.0	
Prometon	85.8	109.2	
Simazine	63.1	103.4	
Hexazinone	80.0	98.7	
Demeton S Methyl	69.7	117.0	
Tebuthiuron	79.1	96.3	
Ametryn	66.7	103.4	
Terbutryn	81.7	102.8	
Azinphos Methyl	58.1	91.8	
Trietazine	46.8	91.6	
Azinphos Ethyl	60.5	86.1	

Table 2. Reduction of ion suppression for a ginger extract upon 10x dilution of original samples. Calculated as percent peak area recovery to a standard injection with no matrix present.

CONCLUSIONS

- Xevo TQ-S allows detection of pesticides in complex food matrices using large multi-residue methods to below the required regulatory concentrations. This includes compounds with poor relative response factors.
- The RADAR mode of acquisition enables the collection of spectral information on background components in the sample matrix while simultaneously collecting MRM data. This can help identify areas of potential ion suppression, observe untargeted contaminants, and aid in the development of matrix reduction strategies.
- Where matrix effects are observed, the high sensitivity offered by Xevo TQ-S allows matrix concentration in samples to be reduced to counteract these effects. This is possible while maintaining detection at regulatory concentrations and allows higher confidence in reported data.

References

- 1. J M Marín et al. Journal of Chromatography A. 1216: 9, 1410-1420. 27 February 2009.
- 2. Haj lová & Zrostlíková. Journal of Chromatography A. 1000:1-2, 181-197. 6 June 2003.
- 3. Gosetti et al. Journal of Chromatography A. 1217: 25, 3929-3937, 18 June 2010.
- 4. Kruve et al. Journal of Chromatography A. 1187: 1-2, 58-66, 11 April 2008.
- 5. website: http://ec.europa.eu/sanco_pesticides/public/index.cfm

THE SCIENCE OF WHAT'S POSSIBLE.™

Waters, ACQUITY UPLC, and ACQUITY are registered trademarks of Waters Corporation. DisQuE, Xevo, Quanpedia, RADAR, and The Science of What's Possible are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

©2010 Waters Corporation. Produced in the U.S.A. July 2010 720003627en AG-PDF

Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com

APPENDIX 1 PESTICIDE MRM PARAMETERS

	Precursor ion	Product ion	Collison (V)		Precursor ion	Product ion	Collison (V)
cephate	206	64	10	lmazapyr	262	69	24
·	206 223	117 56	12 28	.,	262 312	86 86	24 26
cetamiprid	223	126	12	Imazaquin	312	267	18
ldicarb	213 213	89 116	14 19	Imidacloprid	256 256	175 209	18 14
metryn	228 228	68 186	15 10	Isoproturon	207 207	46 72	15 20
trazine	216	96	34	Isoxaben	333	107	56
	216 188	174 79	16 21		333 336	165 229	16 15
trazine-desethyl	188	146	17	Kresoxim Methyl	336	246	15
trazine-desisopropyl	174 174	79 96	25 15	Linuron	249 249	160 182	15 15
zamethiphos	325 325	112 139	16 16	Malaoxon	315 315	99 127	22 11
zinphos Ethyl	368	132	22	Metalaxyl	280	192	16
	368 340	160 132	35 15	<u> </u>	280 203	220 104	12 20
zinphos Methyl	340	160	10	Metamitron	203	175	15
zoxystrobin	404 404	329 372	15 10	Methamidophos	142 142	94 125	12 12
uturon	237 237	84 126	28 14	Metobromuron	259 259	148 170	14 18
adusafos	271	131	15	Metosulam	418	140	50
	271 202	159 117	28 20		418 225	175 127	26 14
arbaryl	202	145	15	Mevinphos	225	193	9
hlorbromuron	293 293	182 204	22 12	Monolinuron	215 215	99 126	32 20
lorpyrifos	350	97	15	Monuron	199	72	15
nlorpyrifos Methyl	350 322	198 125	20 25	Omethoate	199 214	126 125	23 20
	322 213	290 46	15 15		214 292	183 236	10 12
lortoluron	213	72	15	Parathion	292	264	10
odinafop-propargyl	350 350	91 266	15 16	Phoxim	299 299	129 153	15 7
oumaphos	363 363	289 307	30 15	Pirimiphos-ethyl	334 334	182 198	23
yanazine	241	96	22	Pirimiphos-methyl	306	108	21 30
*	241 167	214 60	14 23		306 226	164 86	20 26
yromazine	167 253	108 61	15 17	Prometon	226 444	184 100	16 15
emeton S Methyl	253	89	17	Propaquizafop	444	371	15
emeton S methyl sulfone	263 263	121 169	28 14	Pymetrozine	218 218	79 105	28 18
esmetryn	214	82	28	Pyraclostrobin	388	163	23
-	214 238	172 112	19 10	<u> </u>	388 374	194 194	11 30
icrotophos	238	193	10	Pyrazophos	374	222	20
ifenoxuron	287 287	72 123	18 18	Quinmerac	222 222	141 204	28 14
iflubenzuron	311 311	141 158	30 15	Quizalofop-ethyl	373 373	91 299	30 16
imefuron	339	72	24	Siduron	233	94	23
	339 230	167 125	18 18		233	137 96	15 22
imethoate	230	199	10 28	Simazine	202	124	16
imethomorph	388 388	165 301	18	Simetryn	214 214	96 124	23 18
isulfoton	297 297	61 89	32 12	Spiroxamine	298 298	100 144	30 19
iuron	233	46	13	Sulfotep	323	97	30
thoprophos	233 243	72 97	16 29	Tebuthiuron	323 229	171 116	14 24
	243 165	131 46	18 13		229 230	172 96	16 26
enuron	165	72	15	Terbuthylazine	230	174	15
amprop-methyl	336 336	77 105	46 15	Terbutryn	242 242	186 200	15 15
uazafop-P-butyl	384	282	20	Tetrachlorvinphos	365	127	15
	384 364	328 152	15 18	Thiabendazole	365 202	239 131	18 26
lufenacet	364 233	194 46	10 16	iniapenuazole	202 230	175 71	24 28
luomethuron	233	72	16	Trietazine	230	99	21
eptenophos	251 251	125 127	13 13	Zoxamide	336 336	159 187	36 23
exazinone	253	71	28		550	101	