Ultra-Sensitive Detection of Pesticides in Drinking Water with a Simple, Rapid, and High Quality Analysis

Paul Silcock, Gareth Booth, James Morphet, Eleanor Riches, and Peter Hancock Waters Corporation, Manchester, UK

APPLICATION BENEFITS

- Using direct injection on Xevo[™] TQ-S removes sample preparation and enables a simple, high-throughput analysis of pesticides in drinking water.
- Allows detection of pesticides to parts-perquadrillion (ppq), to enable real background concentrations in samples to be observed.
- Analyze over five samples per hour and over 80 samples in a typical overnight run.
- Collect spectral information on background components in the sample matrix while simultaneously collecting MRM data.

WATERS SOLUTIONS

ACQUITY UPLC Xevo TQ-S, Quanpedia, RADAR, TrendPlot

KEYWORDS

drinking water, fungicides, triazine and phenylurea herbicides, organophosphorous, and organothiophosphorous pesticides

INTRODUCTION

Rapid and highly sensitive analysis of drinking water is essential for protecting human health and well-being. The assurance of clean, safe drinking water has become more critical given the potential of accidental or intentional contamination, which have increased in recent years.

Monitoring for harmful substances in drinking water, or water used in products intended for consumption is required to ensure that exposure to the consumer is limited. Apart from the duty of care to consumers, organizations have regulatory testing imposed on them to ensure a safe product is delivered. The World Health Organization (WHO) publishes guidelines for drinking water quality¹ and these are used as the basis of much of the drinking water regulation across the globe.

Highly efficient water treatment processes remove a majority of pesticides that have entered water sources², but drinking water regulations still require testing to ultra-trace concentrations. In order to report results to regulators, testing must be of high quality to conform to international standards such as ISO17025.

This requirement has led to multiple approaches for enriching samples before instrumental analysis, and solid phase extraction prior to LC/MS/MS is a popular choice.³ In addition, online pre-concentration and large volume injection using specialized injection systems have been used to introduce samples to LC/MS/MS systems.⁴ These techniques can be very successful but add time, resources, and complexity to the analysis.

Cleaner aqueous samples, such as drinking water, are highly compatible for direct injection onto an LC/MS/MS system; however large multi-analyte determinations require extremely fast systems with ultra-sensitive detection.

This application note describes the use of direct injection ACQUITY UPLC® coupled with Xevo TQ-S for the rapid, high quality, and ultra-sensitive analysis of multiple pesticides in drinking water.

EXPERIMENTAL

Sample preparation

 $Na_2S_2O_3$ was added to drinking water samples to 200 mg/L to ensure dechlorination.

1.0 mL aliquots were transferred into Waters[®]
 LC/MS Certified Amber glass vials certified vials
 (Part No. 600000669CV) and presented for analysis.

LC conditions

LC system:	ACQUITY UPLC
Runtime:	10 min
Column:	ACQUITY UPLC BEH C ₁₈ Column 1.7 μm, 2.1 x 100 mm
Mobile phase A:	98:2 H ₂ 0 : MeOH + 0.1% HCOOH
Mobile phase B:	MeOH + 0.1% HCOOH
Flow rate:	0.5 mL/min
Injection volume:	100 μL full loop
Load ahead:	Enabled

	Flow rate			
Time (min)	<u>mL/min</u>	<u>%A</u>	<u>%B</u>	
0.00	0.5	90	10	
0.25	0.5	90	10	
7.75	0.5	2	98	
8.50	0.5	2	98	
8.51	0.5	90	10	

MS conditions

MS system:	Xevo TQ-S				
lonization mode:	ESI positive				
Capillary voltage:	0.6 kV				
Source temp:	150 °C				
Desolvation gas:	1200 L/h				
Desolvation temp:	650 °C				
Cone gas flow:	150 L/h				
Acquisition mode:	Multiple Reaction Monitoring (MRM) with RADAR™ enabled				

Quanpedia[™]- generated MRM parameters (full MRM list can be found in Appendix 1) were used as the basis of RADAR-enabled mass spectrometer acquisition method. RADAR is an information-rich acquisition approach that allows measurement of target analytes with precision in MRM mode, while simultaneously scanning the background for all other components.

Figure 1 shows a RADAR enabled mass spectrometer acquisition method with time scheduled MRMs for target pesticides and a simultaneous full scan (MS2) acquisition.

MRM table in Appendix

Figure 1. RADAR-enabled mass spectrometer acquisition method with time scheduled MRMs for target pesticides and a simultaneous full scan (MS2) acquisition.

Data processing

MassLynx[™] Software v.4.1 was used for instrument control, and data acquisition. Data were processed using various MassLynx tools, and quantitation was performed using TargetLynx[™] Application Manager.

RESULTS AND DISCUSSION

Sample throughput

Direct injection of drinking water samples onto the Xevo TQ-S eliminated the need for sample preparation prior to analysis. Direct injection was performed using a standard ACQUITY UPLC System with standard 2-mL ACQUITY UPLC autosampler vials.

Rapid ACQUITY UPLC separations allowed a high-throughput analysis with all analytes of interest eluting before 7.5 min and a total runtime of 10 min for each sample. Separations of 81 typically analyzed pesticides were performed and an overlaid MRM total ion chromatogram is shown in Figure 2. The ACQUITY UPLC System was operated with load ahead enabled. This allows for the next sample to be ready to inject immediately after the previous sample has completed, which helps optimize instrument efficiency.

The simplicity of this approach enabled the full analysis of just over five samples per hour and over 80 samples in a typical overnight run.

Figure 2. Overlaid MRM chromatograms of 81 pesticides analyzed using direct injection of a drinking water sample fortified at 100 ng/L.

Ultra-sensitive pesticide detection

The EU drinking water directive (98/83/EC) lists quality standards for drinking water that are among the strictest in the world. This directive sets total pesticide contamination at a maximum of 500 ng/L and 100 ng/L for individual pesticides.⁵

Detection of pesticides to extremely low concentrations was achieved using direct injection Xevo TQ-S. This level of sensitivity allows detection of pesticides to parts-per-quadrillion (ppq) or pg/L. Figure 3 shows detection of a selection of pesticides in a water sample spiked at 200 ppq (pg/L). This is 500 times below the EU requirement.

The capability to measure to this level allows real background concentrations of contaminants to be observed and monitored. This can facilitate trending in sample points and batches and allows a better understanding of final product quality.

[APPLICATION NOTE]

In addition, increased sensitivity allows high confidence when reporting data around the regulatory limits. Increased signal (peak) sizes allow more comfortable measurements at lower concentrations, which translate to higher quality analyses.

Linearity and precision

4

External calibration (7 point with replicates at each point) of target analytes was performed at concentrations around the common regulatory level for pesticides (100 ng/L). Good linearity was achieved for all compounds analyzed with typical coefficient of determinations (r2) of > 0.995. Calibration curves for diuron, desmetryn, imidacloprid and dicrotphos are shown in Figure 4.

Figure 4. TargetLynxgenerated calibration curves for diuron, imidacloprid, desmetryn, and dicrotophos.

The ability to measure with high precision at ultra-trace levels is a critical requirement for making high-quality determinations, as well as for observing trends in samples and sample batches. It also instills a higher degree of confidence in reported results.

The removal of variables that were introduced during sample preparation, combined with the precision of the ACQUITY UPLC coupled with Xevo TQ-S allowed very precise measurements in drinking water. Peak area precision was tested at 100 ng/L fortified QC samples over 32 injections. Table 2 shows peak area precision for different compounds from a variety of pesticide types in these QC samples. Figure 5 shows a TrendPlot[™]- generated chart showing peak area precision of fenuron, simazine, and flumeturon from the same set of QC samples. TrendPlot is a data analysis tool that can be used to examine TargetLynx datasets to show trends and outliers in and between batches.

Class	Compound	%RSD (n=32)	
	Ametryn	1.39	
	Terbutryn	1.96	
Triazine herbicides	Cyanazine	1.26	
	Atrazine	1.46	
	Simetryn	1.78	
	Spiroxamine	1.85	
	Kresoxim Methyl	4.29	
Fungicides	Azoxystrobin	2.19	
	Dimethomorph	4.14	
	Pyraclostrobin	4.18	
	Chlortoluron	0.59	
	Siduron	1.24	
Phenylurea herbicides	Monuron	1.56	
i nengarea nerbietaes	Monolinuron	1.09	
	Diuron	1.24	
	Dicrotophos	0.94	
	Heptenophos	1.47	
Organophosphorous pesticides	Mevinphos	2.34	
	Tetrachlorvinphos	2.47	
	Chlorfenvinphos	3.67	
	Omethoate	1.22	
	Demeton S Methyl	1.50	
Organothiophosphorous pesticides	Azinphos Methyl	2.48	
	Dimethoate	2.27	
	Ethoprophos	2.31	
L	Mean	2.04	

Table 2. Peak area precision data for 32 injections of 100 ng/L QC samples showing different compound from a variety of pesticide classes.

5

Figure 5. TrendPlot generated chart showing peak area precision of fenuron, simazine, and flumeturon for 100 ng/L QC samples.

Background matrix monitoring using RADAR-enabled MS methods

The simultaneously acquired full scan data (using RADAR-enabled MRM method) allowed observation of the matrix challenge for every individual sample injected. This information can help identify areas of potential ion suppression, observe untargeted contaminants, and aid in the development of further cleanup and matrix reduction strategies. It can also help track method cleanup efficiency, as well as any changes in sample matrix that may occur as different batches of samples are analyzed.

With simultaneous full scan capability matrix components that co-elute with MRM target analytes can be investigated by interrogating the "always available" spectral data. Figure 6 shows RADAR-enabled MS acquisition of drinking water sample spiked at 100 ng/L. Light blue colored chromatogram is MS2 base peak intensity (BPI) full scan chromatogram. Also shown overlaid is a selection of simultaneously acquired pesticide MRMs. The mass spectrum (Figure 6 inset) shows intense back-ground ions of a component that elutes over a broad region in the chromatogram. This co-elutes with a target analyte and highlights a component that may cause some matrix effect.

Figure 6. RADAR-enabled MS acquisition of drinking water sample spiked at 100 ng/L. Light blue colored chromatogram is MS2 fullscan BPI with spectrum from a region of co-elution (inset). Also shown overlaid is a selection of simultaneously acquired pesticide MRMs.

CONCLUSIONS

Using direct injection on Xevo TQ-S removes sample preparation and enables a simple, high-throughput analysis of pesticides in drinking water.

This is possible with ultra-sensitive detection down to ppq or pg/L concentrations to enable real background concentrations in samples to be observed.

Ultra-sensitivity facilitates a high-quality analysis with high precision and comfortable quantitation around the regulatory concentrations. This in turn instills confidence in the data reported.

The RADAR mode of acquisition enables the collection of spectral information on background components in the sample matrix while simultaneously collecting MRM data. This can help identify areas of potential ion suppression, observe untargeted contaminants, and aid in the development of matrix reduction strategies.

The capabilities and performance characteristics of the Xevo TQ-S provide an efficient, high-quality output for laboratories that perform pesticide analysis in drinking water. With less time required for sample preparation and troubleshooting extraction procedures more time can be devoted to reporting higher quality data. This can ultimately lead to an improvement in laboratory performance which in turn translates to more success with business activities that are reliant on the laboratory.

References

- 1. website: http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf
- 2. M P Ormad et al. Chemosphere. 71: 1 (97-106), March 2008.
- Marina Kuster, Maria López de Alda, and Damià Barceló. Journal of Chromatography A. 1216: 3 (520-529), 16 January 2009.
- Araceli Garcia-Ac et al.. Journal of Chromatography A.1216: 48 (8518-8527), 27 November 2009.
- 5. Council Directive 98/83/EC: http://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=CELEX:31998L0083:EN:NOT

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Waters and ACQUITY UPLC are registered trademarks of Waters Corporation. Xevo, Quanpedia, RADAR, MassLynx, TargetLynx, TrendPlot, and The Science of What's Possible are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

©2010 Waters Corporation. Produced in the U.S.A. May 2010 720003465en AG-PDF Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com

APPENDIX 1 PESTICIDE MRM PARAMETERS

	Precursor ion	Product ion	Collison (V)		Precursor ion	Product ion	Collison (V)
Acephate	206 206	64 117	10 12	Imazapyr	262 262	69 86	24 24
Acetamiprid	223 223	56 126	28 12	Imazaquin	312 312	86 267	26 18
Aldicarb	213	89	14	Imidacloprid	256	175	18
Ametryn	213	68	15	Isoproturon	207	46	14
Atrazine	228	96	34	Isoxaben	333	107	20 56
	216 188	174 79	16 21	Karanda Matal	333 336	165 229	16 15
Atrazine-desemyi	188	146 79	17	Kresoxim Metnyl	336	246	15 15
Atrazine-desisopropyl	174	96	15	Linuron	249	182	15
Azamethiphos	325 325	112	16	Malaoxon	315 315	127	11
Azinphos Ethyl	368 368	132 160	22 35	Metalaxyl	280 280	192 220	16 12
Azinphos Methyl	340 340	132 160	15 10	Metamitron	203 203	104 175	20 15
Azoxystrobin	404	329 372	15 10	Methamidophos	142	94 125	12
Buturon	237	84	28	Metobromuron	259	148	14
Cadusafos	237	126	14	Metosulam	418	140	50
	271 202	159 117	28 20	Mantakar	418 225	175 127	26
Carbary	202	145 182	15 22	Mevinphos	225	193 99	9
Chlorbromuron	293	204	12	Monolinuron	215	126	20
Chlorpyrifos	350 350	97 198	20	Monuron	199	126	23
Chlorpyrifos Methyl	322 322	125 290	25 15	Omethoate	214 214	125 183	20 10
Chlortoluron	213 213	46 72	15 15	Parathion	292 292	236 264	12 10
Clodinafop-propargyl	350 350	91 266	15 16	Phoxim	299 299	129	15 7
Coumaphos	363	289	30	Pirimiphos-ethyl	334	182	23
Cyanazine	241	96 214	22	Pirimiphos-methyl	306 306	108	30
Cyromazine	167	60 108	23	Prometon	226	86 184	26
Demeton S Methyl	253 253	61	17	Propaquizafop	444	100	15
Demeton S methyl sulfone	263 263	121	28	Pymetrozine	218 218	79	28
Desmetryn	214 214	82 172	28 19	Pyraclostrobin	388 388	163 194	23 11
Dicrotophos	238	112	10	Pyrazophos	374	194	30 20
Difenoxuron	238	72	18	Quinmerac	222	141	28
Diflubenzuron	311	123	30	Ouizalofop-ethul	373	91	30
Dimefuron	311 339	158 72	15 24	Siduron	373 233	299 94	16 23
	339 230	167 125	18		233 202	137 96	15 22
	230 388	199 165	10 28	Simazine	202	124 96	16 23
Dimethomorph	388	301	18	Simetryn	214	124	18
Disulfoton	297	89	12	Spiroxamine	298	144	19
Diuron	233 233	46 72	13	Sulfotep	323 323	97 171	30 14
Ethoprophos	243 243	97 131	29 18	Tebuthiuron	229 229	116 172	24 16
Fenuron	165 165	46 72	13 15	Terbuthylazine	230 230	96 174	26 15
Flamprop-methyl	336 336	77 105	46 15	Terbutryn	242 242	186 200	15 15
Fluazafop-P-butyl	384	282	20	Tetrachlorvinphos	365	127	15
Flufenacet	364 364	152	18	Thiabendazole	202 202	131	26
Fluomethuron	233	46	16	Trietazine	230	71	28
Heptenophos	251	125	13	Zoxamide	336	159	36
Hexazinone	251	71	28		330	181	23
	253	171	15				