A METHOD DEVELOPMENT APPROACH TO ACHIEVE AN IMPURITY PROFILE FOR IMPURITIES PRESENT IN A BULK DRUG SUBSTANCE USING SUB 2µM POROUS PARTICLE LC COMBINED WITH UV-MS

Michael D. Jones and Robert Plumb Waters Corporation, Milford, Massachusetts, USA, 01757

METHOD SCOUTING MANAGEMENT

INTRODUCTION

Impurity profiling of pharmaceutical drug substances or dosage forms require methods involving high sensitivity and specificity as well as desirable analysis times. Liquid chromatography and mass spectrometry have become essential tools in the analysis and characterization of drug impurities, with analysis in the 30 minute to 1 hour time frame. In this presentation an efficient method development screening process was employed utilizing short UPLC columns and a generic gradient to fast track the method development screening time. The process takes advantage of the high chromatographic efficiency of sub 2µm particle (UPLC®) technology to deliver rapid method scouting. The use of short columns allowed many column chemistries to be screened quickly in an automated manner using a column manager capable of addressing four columns. Once the best column chemistry was selected, further optimization for resolution was achieved by varying gradient slope and temperature on the longer column dimension. Employing photodiode array detection coupled with single quadrupole MS facilitated the peak tracking as the conditions were varied. The use of specific labeling custom fields in the chromatographic data system allowed for the creation of custom reports to help expedite the mining of the resulting data.

METHODOLOGY

Chromatographic Tools

- ACQUITY UPLC w/ column manager
- ACQUITY PDA coupled to ACQUITY SQD
- Configuration #1 (figure 1)
- Four ACQUITY UPLC chemistries 2.1 x 50 mm, 1.7 µm AQUITY UPLC BEH C18

 - ACQUITY UPLC BEH Phenyl ACQUITY UPLC BEH Shield RP18
 - ACQUITY UPLC HSS T3

Solvents

- Acetonitrile
- Methanol

- Low pH (pH 3 Ammonium Formate)
- High pH (pH 10 Ammonium Bicarbonate)

Approach

- Short Columns for Rapid Screening
- 5 minute gradients from 5-95% organic
- Modify gradient as dictated by sample hydrophobicity
- Temperature at 35°C
- Flow rate of 0.6 mL/min

Figure 1: Configurations of ACQUITY UPLC for Method Development

The Empower 2 CDS was the essential cog allowing a streamlined method scouting strategy. Figure 2 was an example Sample Set method utilizing Empower 2 for method scouting. Various functions highlighted below in green such as "column condition", "equilibrate", and "wet prime" facilitated an increase in injection to injection readiness and system stabilization. The "Column Position" field allowed for the synergy of multiple instrument methods. (i.e. Four methods can now be used as opposed to four methods for each column position)

The custom fields highlighted below in red for "column type", "solvent type" "Buffer Type" and "pH" were key because they were used to aid the visualizing and mining of the data set after it is acquired.

We typically use the same solvents or set of columns, therefore the custom field was created as drop down menu of fields with pre-filled entries. This increased the selection of the correct column and solvent for a particular injection without transcription errors

				Essential for streamlining sequential workflow				Key to data visualization			
Plate/Well	SampleName	lnj Vol (uL)	≠of Injs	Functi	on Run Time (Minutes)	Next Inj. Delay (Minutes)	Column Position	Buffer_type	Column_Type	Solvent_Type	рΗ
				Condition Column	5.00	1.00	Pasition 1				
1:A,1	Blank	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY BEHIC18	ACN	pH=3.00
1:A,2	Glimepiride MS	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY BEHIC18	ACN	pH=3.00
				Condition Column	5.00	1.00	Position 2				
1:A,1	Blank	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY BEH Phenyl	ACN	pH=3.00
1:A,2	Glimepiride MS	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY BEH Phenyl	ACN	pH=3.00
				Condition Column	5.00	1.00	Pasition 3				
1:A,1	Blank	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY BEH Shield RP18	ACN	pH=3.00
1:A,2	Glimepiride MS	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY BEH Shield RP18	ACN	pH=3.00
				Condition Column	5.00	1.00	Pasition 4				
1:A,1	Blank	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY HSS T3	ACN	pH=3.00
1:A,2	Glimepiride MS	2.0	1	Inject Samples	5.00	1.00		10mM Ammonium Formate	ACQUITY HSS T3	ACN	pH=3.00
	•	•						÷	-		
Use	er Defir	ied				T€	emplat	te Defined			

Figure 2: Example Sample Set template in Empower 2 CDS

CHROMATOGRAPHIC OBSERVATIONS

The method scouting approach that was implemented exploited the selectivity effects when changing pH, column ligand, and organic modifier. In many cases selectivity is not the only effect observed. Changes in peak shape can occur and hence overall sensitivity can be optimized.

Figure 3: Selectivity and peak shape effects of varied pH

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

ACQUITY UPLC ACQUITY SQD Empower 2 CDS

Data Analysis

ASSESSING PEAK ATTRIBUTES

Examination of a homogeneous peak vs. a non-homogeneous peak illustrated the *purity angle*, in green, is beneath the purity threshold, in blue. The peak is spectrally pure in this instance, essentially meaning no co-elution. With a nonhomogenous peak, the point of maximum difference in the spectra can be denoted, shown below with the "M" indicating a co-elution. Multiple purity passes will assist in determining multiple co-elutions

Figure 4: Peak Purity plot as determined in Empower 2 CDS

IMPORTANCE of MASS SPECTROMETRY

Tracking peaks by UV during the method development process may be difficult as the spectra of related substances can be similar. With MS data, the peaks can now be easily tracked as well as any additional peaks invisible to UV detection.

Figure 5: MS spectra with chromatogram attributes in same window

CRITERIA FOR DATA ANALYSIS

The scouting experiment and acquiring all of the data is completely automated. Without the proper data analysis and management tools, evaluation of the data is quite burdensome and time-consuming. The system suitability option allowed for the evaluation of:

• Resolution values per peak, Retention of API, Various peak widths, Tailing factors, Area%, S/N

The entire matrix of results to make the proper method development decision totaled 14 runs, 7 separate decision factors, up to 20 peaks, and 2 modes of detection Data to evaluate

- 1 run = 280 resulting values
- 14 runs = 3920 resulting values

To help focus us during data evaluation process, it is important to keep in mind the intent of the method. Is it resolution or speed or perhaps a combination of both with one being of higher priority.

EMPOWER 2 CUSTOM REPORTING

Plots help distinguish between multiple variables that represent different separation conditions by identifying general separation criteria or properties for the peaks in each chromatogram. These particular plots were useful for most evaluations and particularly useful for the impurity profiles, stability indicating methods, and multiple component analyses.

# peaks R _s >1.5	# of Critical Pairs	Peak Shape			
Highest is best	Lowest is Best	Lowest is Best			
Total Integrated Peaks with Rs >1.5	Total Integrated Peaks with Rs < 1.5	Average Chromatographic Peak Width			
Total_peaks_utth_Rs_GT_105 7000 <td< th=""><th>Total_peaks_with_Rs_LT_105 Total_peaks_with_Rs_LT_105 1010 100 100</th><th>Avg_Peak Width_Total_Peaks 9 9 9 9 Avg_Peak Width_Total_Peaks 9 9 9 9 PH=300 Acquity BEH Cita Acin pH=300 Acquity BEH Pianyi Acin pH=300 Acquity HES Ta Acin pH=900 Acquity BEH Shaid RPIB Acin pH=900 Acquity BEH Pianyi Macin pH=900 Acquity BEH Pianyi Macin</th></td<>	Total_peaks_with_Rs_LT_105 Total_peaks_with_Rs_LT_105 1010 100 100	Avg_Peak Width_Total_Peaks 9 9 9 9 Avg_Peak Width_Total_Peaks 9 9 9 9 PH=300 Acquity BEH Cita Acin pH=300 Acquity BEH Pianyi Acin pH=300 Acquity HES Ta Acin pH=900 Acquity BEH Shaid RPIB Acin pH=900 Acquity BEH Pianyi Macin pH=900 Acquity BEH Pianyi Macin			
6.00- 4.00- 2.00-		2.00-			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Run Num ber	1 2 3 4 5 6 7 8 9 10 11 12 13 14 Run Number	1 2 3 4 5 6 7 8 9 10 11 12 13 14 Run Number			

MINING THE DATA

EMPOWER 2 CUSTOM CALCULATIONS

An "Injection Score" was used to assess all the resulting plots. It was an estimation of conditions which were suitable to explore for further optimization. In this this particular example, the injection score equation included factors about:

scenario

RESULT FROM EMPOWER DATA MINING

Result based on Empower 2 data interpretation with Total Number of Peaks and Injection Score, the conditions to optimize for the glimepiride impurity profile are shown below.

/aters THE SCIENCE OF WHAT'S POSSIBLE.™

Empower 2 **Custom Calculations** Custom Reporting

Optimization

- Total peaks found
- Total peaks above 1% area
- Run time
- Average peak width Separation space

*Injection score equations are recommended to include a weighted relationship of the user's goals and criteria

Chromatograms were easily located to verify the best case

Figure 7: Injection Score summary

OPTIMIZATION PROCESS

The optimization process included variations of gradient slope, temperature, and column dimensions. The guidance of simulation software (Drylab® 2000 Plus, Molnar-Institut, Germany) assisted optimization of the chromatogram with the most efficient process. Upon four injections which were strategically suggested by the software, the input of retention times and area% of each peak of interest was performed. The MS and PDA spectral information aided the peak tracking. Properly tracked peaks increased the predictive ability of the simulation software resulting in a more successful confirmation result of predicted optimal conditions.

CONCLUSION

More efficient method development using a systematic approach

- Allows more analytical space to be covered
- Leads to more robust and better methods guicker
- Increases laboratory productivity

Implementing this approach requires

- Range of column chemistries
- System designed to provide both resolution and productivity
- Informatics that aids in data interpretation and sharing

Benefits

- Overall time savings of approx 6X
- Less consumption, Less waste

	UPLC Method Developme	ant Protoco		EQUIV HPLC Method Development Protocol				
	2.1 x 50 mm, 1.7	μm		4.6 x 150 mm, 5 µm				
	pH 3/ acetonitrile x 4	columns	Time	pH 3/ acetoni	trile x4	Time		
	Column conditioning		5 min	Column conditioning		20 mii		
	Column re-equilibration		1 min	Column re-equilibration		10 mir		
	Sample injection (2 replicates)	(6min x 2)	12 min	Sample injection (2 replicates)	(440mmin x 2)	80 mii		
	Blank injection (2 replicates)	(6min x 2)	12 min	Blank injection (2 replicates)	(40min x 2)	80 mir		
	System purge		4 min	System purge		7 mi		
	pH3/ methanol x 4 co	lumns		pH3/ methanol x 4				
	Column conditioning		5 min	Column conditioning		20 mii		
	Column re-equilibration		1 min	Column re-equilibration		10 mi		
	Sample injection (2 replicates)	(6min x 2)	12 min	Sample injection (2 replicates)	(40m in x 2)	80 mi		
	Blank Injection (2 replicates)	(6min x 2)	12 min	Blank Injection (2 replicates)	(40min x 2)	80 ml		
	System purge		4 min	System purge		7 mi		
	pH 10/ acetonitrile x 3	columns		pH 10/ acetonit	rie x 3			
	Column conditioning		5 min	Column conditioning		20 m ii		
	Column re-equilibration		1 min	Column re-equilibration		10 mi		
	Sample injection (2 replicates)	(6 min x 2)	12 min	Sample injection (2 replicates)	(440mrin x 2)	80 mi		
	Blank injection (2 replicates)	(6min × 2)	12 min	Blank injection (2 replicates)	(440 min x 2)	80 mi		
	System purge		4 min	System purge		7 ml		
	pH 10/ methenol x 3 c	olumns	pH 10/ methan	ol x 3				
	Column conditioning		5 min	Column conditioning		20 mi i		
	Column re-equilibration		1 min	Column re-equilibration		10 mi		
	Sample injection (2 replicates)	(6min x 2)	12 min	Sample injection (2 replicates)	(40min x 2)	80 mii		
	Blank Injection (2 replicates)	(6 min × 2)	12 mln	Blank Injection (2 replicates)	(40min x 2)	80 ml		
	System purge		<u>4 min</u>	System purge		<u>7 mi</u>		
	pH 3 scouting time	272	minutes	pH 3 scouting time	1576	minutes		
pH 10 scouting time 204 r			minutes	pH 10 scouting time	1182	minute		
	SCOUTING TIME	47	76 min	SCOUTING TIME	275	8 min		
	TOTAL SCOUTING TIME	7.9 H	OURS	TOTAL SCOUTING TIME	46.0 H	OURS		

© 2009 Waters Corporation | COMPANY CONFIDENTIAL