UPLC-MS ANALYSIS OF RNAI OLIGONUCLEOTIDES

Vera B. Ivleva, Ying-Qing Yu, Martin Gilar, and John C. Gebler Waters Corporation; 34 Maple Street, Milford, MA 01757

INTRODUCTION

Small interfering RNA (RNAi) are oligonucleotides, which selectively disrupt the production of proteins in a process called RNA interference. Interference can be tuned by RNAi sequence selection.

Discovery of RNAi mechanism prompted a need for the analysis of RNAi. To satisfy the need for a robust, fast, and sensitive analysis of 20-25 nucleotides long RNAi, we developed a UPLC/MS method following by MS/MS fragmentation. This approach is suitable for oligonucleotide purity control and monitoring the chemical synthesis efficiency.

METHODS

Instrument

Data were acquired on Waters[®] Q-Tof Premier and SYNAPT[™] HDMS[™] mass spectrometers.

Waters[®] ACQUITY UPLC[®], 50 µL mixer (PN 700002631)

ACQUITY UPLC[®] Photodiode Array detector, 20 points/s sampling rate

MassLynx[™] v. 4.1 software for control and data acquisition

RNAi Samples

21 nt (nucleotides): 5' -UUC UGU AAU CUC UUG UCU ATT -3'; 20 nt: 5' -UC UGU AAU CUC UUG UCU ATT -3' (Integrated DNA Technologies, Coralville, IA). All samples were reconstituted in 0.1 M triethylamine acetate (TEAA) to 40 pmole/ μ L

Column

Oligonucleotide Separation Technology Waters[®] ACQUITY UPLC[®] OST C₁₈ 1.7 µm, 135 Å, 2.1x50 mm (PN 186003949)

CHROMATOGRAPHY METHOD	Gradient							
Column temperature: 60°C Sample injected: 2.5 µL Sample temperature: 15°C Flow Rate: 0.2 mL/min Weak wash: water Strong wash: water Mobile Phase:	Time 0.00 10.00 10.10 15.00	A% 80.0 60.0 80.0 80.0	B% 20.0 40.0 20.0 20.0					
A: aqueous solution of 15 mM trietylamine (TEA, Fluka 23,962 3) and 400 mM hexafluoroisopropanol (HFIP, Fluka 32,522-8) pH 7.9, measured by weight B: 50% solvent A, 50% methanol, v/v								

ASSIGNMENT OF FAILURE SEQUENCES

MASS SPECTROMETRY METHOD

Capillary: 2500 V Desolvation temperature: 200° C Desolvation Gas Flow: 600 L/hr

Sample cone: 35 V Source temperature: 120° C Ion energy: 1 V

MS parameters were chosen in order to achieve maximum declustering of TEA clusters and adducts without compromising ion intensity.

unknown impurities

Full length synthetic RNAi was successfully resolved from its failure sequences (5'-truncated oligomers), generated during oligo synthesis. Impurities of another oligomer were recognized. Mobile phases are well compatible with MSionization.

Gradient

1.0

Time	Α%	В%		
0.00	76.0	24.0		
10.00	56.0	44.0		
10.10	76.0	24.0		
15.00	76.0	24.0		

Time (min)

21 nt sample was spiked with 20 nt homolog (1:1) to confirm the assignment of the 20 nt peak as a failed sequence.

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

MS/MS SEQUENCING OF 21-MER RNA

CCU UGU AAU CGC UUG ACG ATT

Ion guide: 2.5 V

Extraction cone: 3 V

Adopted from McLuckey S.A. et al., J. Am. Soc. Mass Spectrom. **1992**, 3, 60-70

 E_{col} ramp 30 V \rightarrow 50 V

ASSIGNMENT OF ION FRAGMENTS

"Lock-Mass" calibration on SYNAPT MS

Calibrant: 10 mg/mL CsI in 50% isopropanol, 50% water Reference spray flow rate: 5 µL/min Scan Time: 1 sec, Frequency: 30 sec

ion	theoretical	observed	ppm	ion	theoretical	observed	ppm
fragment	m/z	m/z		fragment	m/z	m/z	
W 20	321.049	321.054	-15.6	[c ₅ -Cyt] ⁻	1455.130	1455.131	-0.7
[a₂-B]⁻	418.066	418.065	2.4	C 14 3-	1467.164	1467.150	9.5
y 19	545.129	545.127	3.7	Y 16	1524.270	1524.269	0.7
C 2	609.075	609.074	1.6	y 11 ²⁻	1557.227	1557.200	17.3
W ₁₉	625.095	625.094	1.6	C 5	1566.173	1566.174	-0.6
<i>[c</i> ₃ - Cyt <i>]</i> ⁻	804.057	804.057	0.0	C 15 3-	1582.180	1582.147	20.9
У 18 [¯]	874.181	874.183	-2.3	W_{11}^{2}	1597.210	1597.198	7.5
C ₃	915.100	915.102	-2.2	<i>[M-</i> Gua] ⁴⁻	1612.203	1612.161	26.1
У 15 ²⁻	926.157	926.144	14.0	У ₅ ³⁻	1677.897	1677.874	13.7
c ₆ ²⁻	935.595	935.585	10.7	C 16 3-	1691.863	1691.863	0.0
W 15 ²⁻	966.127	966.141	-14.5	W_{5}^{3-}	1704.552	1704.578	-15.3
y 14 ²⁻	1098.681	1098.670	10.0	y 10 ²⁻	1729.751	1729.747	2.3
C 7 2-	1100.122	1100.114	7.3	C 11 ²⁻	1742.705	1742.709	-2.3
[c ₄ -Cyt]	1110.083	1110.085	-1.8	W 10 ²⁻	1769.734	1769.729	2.8
[a ₈ -B] ²⁻	1157.137	1157.123	12.1	У ₄ ³⁻	1792.913	1792.956	-24.0
у ₁₇	1219.229	1219.231	-1.6	У ₁₅	1853.323	1853.330	-3.8
C ₄	1221.126	1221.143	-13.9	У 9 ²⁻	1882.271	1882.255	8.5
У 13 ²⁻	1251.694	1251.675	15.2	C 12 ²⁻	1895.225	1895.229	-2.1
C 8 ²⁻	1264.648	1264.639	7.1	C 18 3-	1908.561	1908.528	17.3
W ₁₇	1299.195	1299.196	-0.8	W 15	1933.289	1933.289	0.0
[a₅-B]⁻	1335.157	1335.157	0.0	C 19	2018.245	2018.193	25.8
У 12 ²⁻	1404.706	1404.690	11.4	У 8 ²⁻	2035.284	2035.298	-6.9
C ₉ ²⁻	1417.660	1417.647	9.2	C 13 ²⁻	2048.238	2048.242	-2.0
W_{12}^{2}	1444.690	1444.683	4.8	C ₇	2201.251	2201.272	-9.5

CONCLUSIONS

- We have demonstrated the ability of the UPLC/MS system to perform routine analysis and quality control of the small interfering RNA molecules. The speed of ACOUITY UPLC will increase the productivity of any laboratory performing oligonucleotides analysis.
- Superior UPLC resolution, together with high mass accuracy of Q-Tof Premier detection, allows oligonucleotide purity determination and deciphering of the whole RNAi oligonucleotide sequence, including extra uridine mononucleotide.
- MS/MS fragmentation of 21 nt RNA provided an extensive range of the characteristic y and c ions, sufficient to interpret a full RNAi sequence. Efficient confirmatory sequencing provides verification of known structures according to FDA requirements for therapeutic oligonucleotides.