Waters

PRELIMINARY INVESTIGATIONS OF A DIURETIC SCREENING METHOD CONVERTED FROM HPLC/MS/MS TO UPLC/MS/MS

¹<u>Russell Watts</u>, ²Philip Grace, ¹Michelle Wood and ²Simon Hudson ¹Waters Corporation, MS Technologies Centre, Manchester, UK ²HFL, Fordham, Cambridgeshire, UK

AIM

The conversion of a qualitative diuretic screening method used in sports doping analysis from HPLC/MS/ms (total run time of 10 min) to Ultra Performance Liquid Chromatography[™] – UPLC[™]/MS/MS —where the analysis time is reduced without any loss of sensitivity and selectivity.

INTRODUCTION

- Diuretic compounds are listed as prohibited substances on the 2006 World Anti-Doping Code
- Diuretics can be used to mask the use of other banned substances such as steroids by speeding up the excretion of the compound via the urine
- Diuretics are used in sports with weight categories, such boxing and weight lifting, to rapidly lose weight via increased urination, allowing participation in a lower weight class
- World Anti-Doping Agency (WADA) states all laboratories must be able to confidently detect the minimal required performance limit (MRPL) of 250 ng/mL
- The increased number of athlete samples being tested each year has led to a need for a high-throughput rapid screen for prohibited substances
- Here we describe a rapid and sensitive UPLC/MS/MS

METHODS

SAMPLE PREPARATION

Sample pre-treatment: 500 µL sample + 500 µL buffer (containing 500 ng/mL ISTD Clorsulon).

SPE sample clean-up: Oasis® HLB 1cc (30mg)

Condition	1 mL Methanol					
	1 mL H ₂ O					
Load	1 mL Pre-treated sample					
Wash	200 µL Hexane					
Elution	1 mL Ethyl Acetate					

Evaporate 500 µL of eluent to dryness and reconstitute in 100 µL 50:50 Acetonitrile:H₂O.

CHROMATOGRAPHY

Waters[®] ACQUITY UPLC[™] System

Column: ACQUITY UPLC BEH C18 (2.1 x 100 mm, 1.7 μm) Column temp: 50 °C Autosampler temp: 10 °C Injection vol: 10 µL Solvent A: 0.1% Ammonium Hydroxide in Water Solvent B: 0.1% Ammonium Hydroxide in Acetonitrile Gradient program:

Time	% B	Flow	Curve
0	10	0.25	1
2.0	95	0.25	6
3.0	10	0.25	1

MASS SPECTROMETRY

Mass spectrometer: Waters Quattro micro[™] tandem mass spectrometer lonisation mode: ES negative ion Capillary voltage: 2.5 kV

RESULTS

The chromatographic separation (figure 1) was performed using a 3 minute gradient with the diuretics identified using compound specific MRM transitions. A limited validation was undertaken. For all compounds, responses were linear (figure 2) over the investigated range (50–500 ng/mL). Intra-assay precision was satisfactory with CV's for spiked QC samples < 20%. The use of the SPE procedure was demonstrated to be very efficient and gave reproducible extraction recoveries i.e. > 78% for all analytes. Limits of quantitation were estimated to be 50 ng/mL with limits of detection ranging from 0.1 to 25 ng/mL, which meets the minimum required performance limits, as specified by WADA, of 250 ng/mL for the detection of diuretics compounds within athlete urine specimens. The method was applied to the analysis of blind spiked samples (n = 6) provided by the WADA accredited laboratory, HFL.

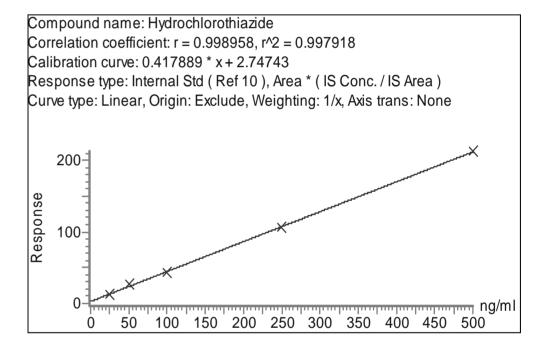


Figure 2. Typical response for urine containing Hydrochlorothiazide. All compounds were quantified by reference to the internal standard Clorsulon.

CONCLUSION

method for the screening of diuretic compounds

00										Be	ndroflun	nethiazi	de
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
00											Μ	etolazo	ne
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
% 											In	dapami	de
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
80											В	umetan	ide
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
00 											Ch	lortalida	one
0] 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
00 											F	urosemi	de
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
80											Ethac	rynic a	cid
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
00				•						Ну	/drochlo	rothiazi	de
0 1 0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00
00											Chlo	rothiazi	
0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	Tii 3.00

Collision gas: Argon at 2.0 x 10⁻³ mbar MS-MS:

Multiple reaction monitoring (MRM) transitions:

Compound	Precursor	Product	Cone	Collision	
	ion	ion	voltage	energy	
	(m/z)	(m/z)	(V)	(eV)	
Chlorothiazide	294	214	45	32	
Hydrochlorothiazide	296	269	40	20	
Ethacrynic acid	301	243	18	10	
Furosemide	329	285	28	15	
Chlortalidone	337	190	32	20	
Bumetanide	363	207	35	25	
Indapamide	364	189	40	25	
Metolazone	364	257	40	20	
Clorsulon (ISTD)	380	344	25	15	
Bendroflumethiazide	420	289	45	25	

This method shows the successful conversion of a qualitative diuretic screening method from HPLC/MS/MS to UPLC/MS/MS

• UPLC/MS/MS can provide a rapid, robust and sensitive solution for high-throughput sports doping analysis, particularly when screening for prohibited diuretics

 Preliminary investigations have shown a three-fold decrease in cycle time when using UPLC compared to the traditional HPLC method

• The method was successfully applied to the analysis of blind samples from a WADA accredited laboratory

Figure 1. MRM chromatograms of the selected diuretic compounds. Responses obtained from a 10 μ L injection of a 100 ng/mL QC sample.

TO DOWNLOAD A COPY OF THIS POSTER VISIT WWW.WATERS.COM/POSTERS

©2006 Waters Corporation 720001862EN