Waters

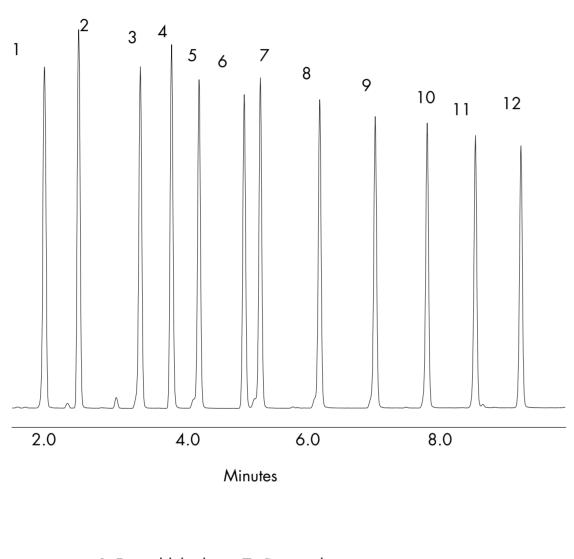
INTRODUCTION

Aldehydes and ketones are products of combustion that permeate the environment. A number of these compounds are known carcinogens and, as a result several USEPA and state methods have been developed for their analysis. These methods, USEPA TO5 (air), 554 (drinking water), 8315A, Options 1 and 2, (waste water, soil and air) along with California Method 1004 (carbonyl compounds as alcohol oxidants in auto exhaust) describe the derivatization of these compounds using Dinitrophenylhydrazine (DNPH) followed by UPLCTM separation and UV detection at 360 nm; target analytes vary slightly by method. Present HPLC methods describe run times of over 40 minutes¹ and multiple column setups² to achieve acceptable analyte resolution.

This poster demonstrates that with UPLC TM analysis time can be reduced by as much as 75%. In addition, excellent resolution is achieved for acetone, acrolein and propanal in Method 8315A, **Option 2 and methacrolein and MEK in California** method 1004.

METHOD

Chromatographic Conditions


System: Waters ACQUITY UPLCTM Column: Waters ACQUITY UPLCTM BEH Phenyl, 2.1X100 mm, 1.7µ @ 35° C Eluent: A-90:10 Water-THF (Stabilized)* B– Acetonitrile * Mix 900 ml water and 100 ml stablized tetrahydrofuran (THF), filter and degas Flow Rate: 0.5 ml / min Injection Volume: 5 µl Gradient Elution* Detection: UV @ 360 nm Data: Waters EmpowerTM Chromatography Software * The chromatographic gradient profiles are unique per the method used due to differences in the selectivity of the target analytes.

RESULTS AND DISCUSSION

EPA Method 554 (drinking water) and 8315 Option 1 (collected by Method 0011) target the same 12 analytes including the strongly retained C₅-C₁₀ compounds (Pentanal-Decanal) The gradient profile (Table 1) and the UPLCTM chromatogram (Figure 1) are shown

Step	Time	Flow	Flow %A		Curve	
1	Initial	0.5	70.0	30.0	-	
2	9.0	0.5	36.0	64.0	6	
3	9.5	0.5	70.0	30.0	11	

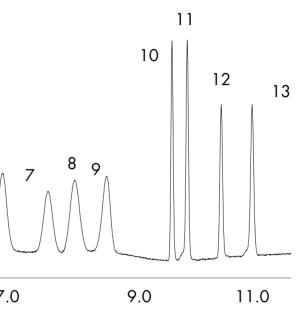
Table 1 Gradient Profile for EPA Methods 554 and 8315 Option 1

1- Formaldehyde	7– Pentanal				
2- Acetaldehyde	8– hexanal				
3– Propanal	9– Heptanal				
4– Crotonaldehyde	10– Octanal				
5– Butanal	11– Nonanal				
6– Cyclohexanone	12– Decanal				

Figure 1 EPA 554, 8315A Option 1 analytes 20 ppm as DNPH derivatives

EPA Method 8315A Option 2 targets 15 analytes includes the difficult baseline triad of acetone, acrolein and propanal along with the three tolualdehyde isomers (o,p,m). This is an indoor air method using collection protocol 0100.The gradient profile(Table 2) and the UPLC[™] chromatogram (Figure 2) are shown

TO DOWNLOAD A COPY OF THIS POSTER VISIT WWW.WATERS.COM/POSTERS


FAST ANALYSIS OF ALDEHYDES AND KETONES USING UPLC

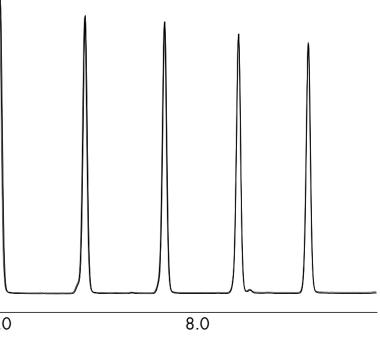

	Step	Time	Flow	% A	% B	Curve	Step	Time	Flow	% A	% B	Curv
	1	Initial	0.5	70.0	30.0	-	1	Initial	0.5	70.0	30.0	-
							2	8.0	0.5	70.0	30.0	6
	2	6.5	0.5	53.0	47.0	6	3	9.0	0.5	50.0	50.0	6
	3	9.5	0.5	70.0	30.0	11	1 4	11.0	0.5	70.0	30.0	11
1	2	Gradient Profi 4 3	ile for EPA Me	7 8	-		2	e 3 Gradient	Profile for Co	c	nod 1004 10 3 9 10 9.0	
2.0		3.0	4.0		5	6.0	2- Ad 3- Ad 4- Ad 5- Pr 6- Ci	-	8- Methad 9- Butana 10– Benzo 11- Penta	il aldehyde nal valdehyde nal d 1004 analy	ytes	
	2- Act 3- Act 4- Act 5- Pro	maldehyde etaldehyde etone rolein panal otonaldehyde anal	8- Benzald 9- Isovaler 10- Pentand 11- o-Tolua 12- p-Tolua 13- mTolua 14- Hexan	aldehyde al aldehyde aldehyde aldehyde	ldehyde		As in any s essential. F standard. A	eparation, re igure 4 is an As demonstro	etention time overlay of 5 ated in Table 4 5 % for all and	(RT)and are injections of 4, RT and are	the EPA 554 ea reproducil	1
	Calife	-	A 8315A Op DNPH derivat 1004 targets	tives		l oxidation						
				usts. Here, th	he critical pa	iir is Methyl						
	Ethyl	Ketone(MEK he UPLC™ cł	() and Metha			file(Table 3)						

Figure 4 Overlay of 5 injections, EPA 554 analytes

Mark E. Benvenuti, Joseph P. Romano Waters Corporation

Analyte	% RSD RT	% RSD Area
Formaldehyde	0.163	0.398
Acetaldehyde	0.119	0.408
Propanal	0.078	0.410
Crotonaldehyde	0.071	0.377
Butanal	0.061	0.336
Cyclohexanone	0.053	0.308
Pentanal	0.103	0.471
Hexanal	0.075	0.296
Heptanal	0.049	0.288
Octanal	0.039	0.267
Nonanal	0.026	0.333
Decanal	0.024	0.338

Table 4 Reproducibility Data for 5 injections, EPA 554 Analytes

CONCLUSION

Aldehydes and ketones can be analyzed as DNPH derivatives rapidly and efficiently using ACQUITY UPLCTM. Results can be obtained several times faster than conventional HPLC technologies with corresponding cost savings, which allows more samples to be processed in a given day. By a simple variant of gradient conditions, the separation requirements of the major EPA Methods 554, 8315A Options 1 and 2 along with California Method 1004 can be achieved.

REFERENCES

1– Bashe W.J. and Eichelberger J. W. USEPA Method 554, " Determination of Carbonyl Compounds in Drinking Water by Dinitrophenylhydrazine **Derivatization and High Performance Liquid** Chromatography" Rev. 1.0, August 1992, p. 554-17

2- " Determination of Aldehyde and Ketone **Compounds in Automotive Source Samples by High** Performance Liquid Chromatography " Method No. 1004, Part F of " California Non-Methane Organic Test Procedures " Monitoring and Laboratory Division, Southern Laboratory Branch, Mobile Source Division, 9528 Telstar Avenue, El Monte, CA 91731, Section 4.1.5, p. F-5