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Figure 12. Fragment ion spectra obtained from the separate shaded areas shown in 
Figure 11, for the tyrosine phosphopeptide. A) Fragmentation occurring post IMS 
where a full fragment ion spectrum of the precursor is obtained and B) Fragmentation 
performed prior to IMS separation. Here, fragments are separated based upon their 
mobility and the increased specificity that IMS separation provides can be seen.  

INTRODUCTION 

Post-translational modification (PTM) of proteins plays a 
fundamental role in cellular processes and their determination 
is one of the main goals of modern proteomics research. 
Among more than 200 known PTM’s, phosphorylation, 
glycosylation and acetylation are the best characterized. 
However, the variety, diversity and heterogeneity of PTM’s on 
proteins calls for novel analytical tools for qualitative and 
quantitative assessment of the structural and functional roles of 
these modifications.  

For this purpose we have investigated the potential of a novel 
travelling wave ion mobility spectrometer for the separation, 
detection and mass determination of post-translationally 
modified proteins. 
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METHODS 
IMS Enabled Mass Spectrometer The instrument used in 
these studies was an experimental hybrid Quadrupole/
TWIMS/oa-Tof mass spectrometer, Figure 1. Ions produced 
by an ESI source are sampled by a Z-Spray source and pass 
through a quadrupole that may be set to transmit a particular 
m/z or pass a substantial mass range. The ions then enter a 
novel three stage TWIMS device [1]. The first device 
(accumulation T-Wave) accumulates ions and releases them in 
a short pulse (200µs) into the next device (IMS T-Wave) in 
which the mobility separation is performed. The final device 
(transport T-Wave) is used to transport the separated ions into 
the oa-ToF for subsequent analysis. Fragmentation of ions may 
occur on entrance to the accumulation T-Wave and/or the 
transport T-Wave. The pressure in the accumulation and 
transport T-Wave regions was ~10-2 mbar of Ar and the 
pressure in the IMS-T-Wave was 0.5 mbar of N2. In High Duty 
Cycle mode, the pusher is synchronised to the release of ions 
from the transport T-Wave device with a delay that is 
dependent upon the mobility separation such that the ion of 
interest is within the oa-extraction region when the  oa-field is 
applied. This consequently leads to a signal increase over the 
entire mass range for a selected charge state. 
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RESULTS 

CONCLUSION 
• The use of ion mobility combined with oa-TOF mass 

spectrometry for the analysis of phophopeptides has been 
presented. 

•  Separation of mono and di-phosphorylated peptides using 
IMS has been shown.  

• The high duty cycle (HDC) mode of operation provides 
improved sensitivity for the detection of modified peptides.  

• The use of MS-IMS-MS allows fragmentation patterns to be 
obtained from both the intact phosphopeptide and peptide 
neutral loss species in parallel. 

• The coupling of IMS and TOF MS shows great potential for 
the analysis of complex phosphopeptide mixtures  

 

OVERVIEW 

Here we present the combination of IMS and oa-TOF 
mass spectrometry for the analysis of post translational 
modifications 

Separation of differentially phosphorylated peptides, 
based upon ion mobility, has been demonstrated  

Fragmentation before and after the IMS separation 
stage is demonstrated, providing additional specificity 

Figure 1. Schematic diagram of experimental instrumentation 
incorporating IMS and TOF MS. 
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Nanoscale Liquid Chromatography- mass spectrometry 

Waters nanoACQUITY UPLC operated in trapping mode. 

Trap column   180µm ID x 20mm long, Symmetry C18 
Analytical col. 75µm ID x 100mm long, Atlantis dC18 
Solvent A   Aqueous 0.1% formic acid 
Solvent B  Acetonitrile + 0.1% formic acid 
Injection mode 1µL Partial Loop. 
Trapping  100% solvent A at 5µL/min for 5 mins. 
Gradient  1—40% B in 30 minutes at 300nL/min. 
 
A capillary voltage of 3.95kV was applied to the nanoESI probe with a 
nebulising gas flow of approximately 5psi. The source temperature was 
set to 70C. 
 
Purification of phosphorylated peptides using TiO2 
microcolumns 
TiO2 microcolumns were packed in GELoader tips essentially as 
described previously [2]. Peptides originating from proteolytic digestion 
of the peptide mixture were diluted 1:5 in loading buffer (2,5-
Dihydroxybenzoic acid (DHB) (300 mg/mL) in 80% acetonitrile/2% TFA) 
and loaded onto the TiO2 microcolumn. The column was washed with 10 
µL loading buffer followed by 20-40µL 80% ACN/1% TFA. 
Phosphorylated peptides were eluted using 20 µL NH4OH, pH 10.5. The 
eluate was acidified and purified using Poros R3 reversed phase 
microcolumns. Phosphorylated peptides were eluted off the R3 column 
using 70 % ACN/0.1% TFA and lyophilized prior to LC-MS. 
Samples were solubilised and then 25mM EDTA, 50mM Amm Phosphate 
added prior to  analysis by LC-MS.  
Phosphopeptide standards (Waters, Milford) were used for the infusion 
experiments. 
 
Mass Spectrometer Acquisition Parameters 

The mass spectrometer  was set to acquire data from m/z 350-1600 in 
1.5 seconds with an 0.1 second inter-scan delay. 
 
High Duty Cycle Mode Calibration 
 
Calibration of the relationship between the pusher and transport T-Wave 
was achieved by infusion of a tryptic digest of Yeast Enolase (Waters 
Corporation), and the centre of the drift time window for doubly charged 
species over the mass range recorded. 

Figure 2. A) Multiple drift time profiles overlaid for the IMS separation of 
the ion at m/z  706.3 corresponding to the di-phosphorylated peptide 
EQLSTSEENSK and the ion at m/z 666.3 corresponding to the mono-
phosphopeptide  species; B) The two phosphopeptides co-elute by HPLC 
as shown in the selected ion mass chromatograms. 

Figure 3. Mass spectra acquired at a retention time of 11.5 minutes, 
but at different IMS drift times; 3.3-3.6msec and 4-4.4msec respec-
tively. Separate mass spectra showing the di-phosphorylated peptide 
and mono-phosphorylated peptide can easily be obtained. 

Figure 5. Mass spectrum acquired in the normal LC-MS mode of opera-
tion (top) compared to the LC-IMS MS mode of operation (bottom), at an 
LC retention time of 18.4 minutes. The bottom spectrum is produced by 
selecting only the portion of the data where multiply charged ions are 
present. This removes singly charged species, improving the signal-to-
noise ratio and allowing the detection of peptides that may have been 
initially obscured by background ions.  

Figure 6. Mass chromatograms for m/z 932.4  acquired in the high duty 
cycle (HDC) mode of operation (bottom) compared to the spectrum ac-
quired in the Tof MS mode of operation, top.   

Figure 7. Drift time vs m/z plot for the MS-IMS-MS analysis of the phos-
phopeptide VNQIGTLSESIK; m/z 724.8 (2+). In this experiment the ion 
was first mass selected with the quadrupole, limited fragmentation induced 
prior to IMS separation and followed by mass analysis with the oa-TOF. 
The sequential neutral loss of H3PO4 can be clearly observed, separated 
from the intact peptide both by m/z and drift time.     

Figure 8. Drift time vs m/z plot from the MS-IMS-MS analysis of the phos-
phopeptide m/z 724 (2+). Similar to Figure 7 except that fragmentation 
was induced both pre and post IMS separation. In this case separate frag-
mentation spectra can be acquired for the parent phosphopeptide and neu-
tral loss species in parallel. 

Figure 9: Fragment ion spectrum from the MS-IMS-MS experiment in Figure 8. 

Figure 11. IMS drift time separation of the intact phosphopeptide NVPLYK and 
comparison to the IMS drift time of the fragment ion m/z 216.04 produced before 
& after IMS separation. The associated drift time of the peptide and immonium ion 
is identical when fragmentation occurs post IMS, whereas a difference in drift time 
can be observed when the fragmentation occurs prior to IMS separation.   
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