QUANTIFICATION OF 17-HYDROXYPROGESTERONE IN PROTEIN-PRECIPITATED PLASMA USING THE QUATTRO PREMIER[™]

Southern L.J., Khan T Waters Corporation, Manchester, UK.

INTRODUCTION

Atmospheric Pressure Chemical Ionization (APCI) is often cited as the technique of choice for improved linearity in quantitative LC/MS/MS. In this technical note we show the newly developed Waters® Micromass® Quattro Premier™ tandem quadrupole mass spectrometer in the analysis of 17hydroxyprogesterone in protein-precipitated plasma. The calibration curve was plotted over five orders linear dynamic range of concentration, indicating excellent dynamic range that will be beneficial in dose ranging studies.

EXPERIMENTAL

A standard solution of 17-hydroxyprogesterone was prepared in methanol (1 mg/ml). Subsequent dilutions were made in human plasma to generate a calibration curve from 1-100,000 pg/µL (5-500,000 pg on column). The calibration standards were then proteinprecipitated by adding acetonitrile (1:1), the resultant mixtures were centrifuged (ca 3000 rpm, 10 mins) and the supernatant taken for analysis by LC/MS/MS. Duplicate injections were made of each standard.

Waters Micromass Quattro Premier Mass Spectrometer configured with the Waters 1525µ Binary HPLC Pump, 2777 Sample Manager and MassLynx Software.

HPLC Conditions

LC System:				
Waters 1525µ binary HPLC pump				
Sample Manager: Waters 2777				
Column: Waters Symmetry [®] C ₁₈ 4.6 x 50 mm				
3.5 μm				
Solvents:				
A - 70% water 30% MeOH 10 mM ammonium				
acetate 0.005% acetic acid				
B - 100% MeOH 10 mM ammonium acetate				
0.005% acetic acid				
Gradient:				

%В

35

35

Flow rate

0.8

0.8 mL/min

MS Conditions

Mass Spectrometer:	Waters Micromass				
	Quattro Premier				
lon mode:	APCI+ve				
Corona:	5 mA				
Cone Voltage:	40 V				
Collision energy:	18 eV				
Detection mode:	MRM (331.3 > 108.9)				
Dwell:	0.3 seconds				
Collision gas:	Argon (2.7x10 ⁻³ mbar)				

0 0.5

Time

6.5	15	85	0.8	
7.0	10	90	0.8	
7.1	0	100	0.8	
7.5	0	100	0.8	
7.6	65	35	0.8	

%A

65

65

Injection volume: 5 µL

RESULTS AND DISCUSSION

The plot of peak area against concentration showed good linearity over the range 5-500,000 pg on column. The calibration line was plotted using a linear fit with $1/x^2$ weighting and gave a correlation coefficient of >0.99 (Figure 1).

Figure 2 shows the QuanLynx[™] results table demonstrating that all the calibration points gave back-calculated values within ±6% of the theoretical concentrations at all concentrations except for the LLOQ which were within ± 13%.

CONCLUSION

The new Waters Quattro Premier tandem quadrupole mass spectrometer has been developed for quantitative LC/MS/MS. The results also show that the Quattro Premier can be used for quantitation over five orders of linear dynamic range, i.e. 5 to 500,000 pg on column for 17-hydroxyprogesterone.

Figure 1. A calibration line for hydroxyproges-terone over the range 5-500000 pg on column.

Quantify Compound Summary Report									
Printed Tue Dec 09 09:44:50 2003									
Compound 1: hydroxyprogesterone									
	Name	Sample Text	Туре	Std. Conc	RT	Area	pg	%Dev	
1	hydroxy_2001	hydroxyprogesterone 0	Blank						
2	hydroxy 2002	hydroxyprogesterone 0	Blank						
3	hydroxy_2005	hydroxyprogesterone 5	Standard	5	5.36	23.804	4.4	-12.4	
4	hydroxy 2006	hydroxyprogesterone 5	Standard	5	5.37	28.273	5.6	11.7	
5	hydroxy_2007	hydroxyprogesterone 50	Standard	50	5.37	196.947	51.1	2.3	
6	hydroxy 2008	hydroxyprogesterone 50	Standard	50	5.38	200.588	52.1	4.2	
7	hydroxy 2009	hydroxyprogesterone 500	Standard	500	5.36	1818.96	489.2	-2.2	
8	hydroxy 2010	hydroxyprogesterone 500	Standard	500	5.36	1944.986	523.2	4.6	
9	hydroxy_2011	hydroxyprogesterone 5000	Standard	5000	5.35	18161.74	4903	-1.9	
10	hydroxy 2012	hydroxyprogesterone 5000	Standard	5000	5.35	19115.75	5160.7	3.2	
11	hydroxy 2013	hydroxyprogesterone 50000	Standard	50000	5.33	177533.7	47945.6	-4.1	
12	hydroxy 2014	hydroxyprogesterone 50000	Standard	50000	5.34	188804.9	50989.7	2	
13	hydroxy 2015	hydroxyprogesterone 500000	Standard	500000	5.34	1740339	470022.3	-6	
14	hydroxy 2016	hydroxyprogesterone 500000	Standard	500000	5.34	1823707	492538.2	-1.5	

Figure 2. QuanLynx results table showing the % deviations for each standard.

Sales Offices:

U.S.A. AND ALL OTHER COUNTRIES:

WATERS CORPORATION 34 Maple St. Milford, MA 01757 U.S.A. T: 508 478 2000 F: 508 872 1990 www.waters.com

Waters

WATERS CORPORATION 34 Maple St. Milford, MA 01757 U.S.A. T: 508 478 2000 F: 508 872 1990 www.waters.com

For Complete Confidence

Waters, Micromass, Quattro Premier, Symmetry and Quanlynx are trademarks of Waters Corporation.

All other trademarks are the property of their respective owners. ©2004 Waters Corporation March 2004 72000825EN DE&LW-UL

