MASS-DIRECTED PURIFICATION OF LONG-CHAIN SYNTHETIC OLIGONUCLEOTIDES AT µMOLE SCALE

Yansheng Wu, Ph.D.¹, Mark A Jandreski, Ph.D., DABCCC, FACB¹, Paul M. Lefebvre², Martin Gilar, Ph.D.², Kenneth J. Fountain², Warren B. Potts Ill²

¹Bayer HealthCare Diagnostics Division, East Walpole, MA; ²Waters Corporation, Milford, MA

Presented at ASMS, Montréal, Canada, June 8-12, 2003

Introduction

Synthetic oligonucleotides have a wide application in molecular biology. They are used in polymerase chain reaction (PCR), RNA interference, DNA sequencing, mutagenesis and antisense drugs, etc.1 However, purification of synthetic oligonucleotides, especially at a largescale, can be time-consuming, expensive, and ineffective. Polyacrylamide gel electrophoresis (PAGE) and cartridges are popular purification methods for synthetic oligonucleotides.² Both methods become more difficult and less efficient as the oligomer chain length and synthesis scale increases. High performance liquid chromatography (HPLC) is capable of the separation; however, at the preparative scale, the UV detector becomes saturated. Using a mass spectrometer allows for a resolved target peak to be identified under the unresolved UV peak. However, the typical ion-pairing mobile phase buffer used for oligonucleotide separation by HPLC is triethylammonium acetate (TEAA), which is not compatible with MS detection. To overcome this, the separation was done using a hexaflouroisopropanol triethylamine (HFIP-TEA) buffer.3 We will present how existing LC/MS methodology was optimized for preparative scale massdirected purification of long-chain oligonucleotides.

Schematic Flow Diagram of the Waters AutoPurification™ System

Experimental

- System
 - Waters® AutoPurification™ System
 - 2525 Binary Gradient Module
 - 2767 Sample Manager
 - Column Fluidics Organizer
 - 2996 Photodiode Array Detector
 - Micromass[®] ZQ[™] Mass Spectrometer
 - 515 HPLC Pump
 - Active Flow Splitter (AFS)
 - Waters® XTerra® C₁₈ 2.5 µm Column
 - Analytical: 4.6 x 50 mm
 - Analytical Overload: 4.6 x 50 mm
 - Preparative: 10 x 50 mm
- Samples
 - The sample shown in this experiment is a 60-mer synthesized by an in-house proprietary method at Bayer HealthCare Diagnostics Division, Walpole, MA.
- Gradient Conditions⁴
 - A: Aqueous buffer of 16.3 mM TEA: 400 mM Hexafluoroisopropanol
 - B: Methanol
 - Slope: 0.25% B/minute starting from 19% B
 - Column Temperature: Ambient
 - Flow Rate: 4.6 mm column = 0.5 mL/min, 10 mm column = 2.4 mL/min
 - Split Ratio: Analytical Overload = 1:12, Preparative = 1:60
 - Makeup solvent: 75:25 Solvent A:B @ 50 μ L/min
- MS Conditions
 - ES- ionization, 550 1550 amu continuum scan in 0.5 seconds with a 0.1 delay.
 - Voltages: Capillary = 2.8 kV Cone: -28 V
 - Temperature: Source = 120 °C,
 Desolvation = 250 °C
 - Gas Flow: Desolvation = 400 L/hr, Cone = 50 L/hr

Identifying the Target Mass

• The typical approach to identifying the target mass is to do a small scale (1 nmol) analytical injection. The trigger for the large scale preparative injection is based on those results.

Analytical Scale

1 nmol on the 4.6 mm column.

Preparative Scale

1µmole on the 10 mm column.

- Both the chromatography and the spectrum have
- The major charge state in the analytical (1 nmol) injection was the 24^{-} charge (m/z = 780.4), but in the preparative injection, the 22 charge (m/z = 851.4) was the major charge state.
- The difference between the analytical and preparative spectra increases as the difference in the mobile phase and make-up solvent composition increases.

Identifying the Target Mass without Doing a Preparative Injection

Scaling Up and Down

- By applying the correct scale factor (r²anal/r²prep) to the prep scaling sample load, the preparative chromatography can be observed without doing the preparative injection.
- A problem arises, however, with mass-directed fractionation. With the 1 nmol injection, the entire flow and sample enters the MS and the ionization solvent is the gradient elution solvent. With the preparative scale injection, the column was overloaded and only a portion of the column eluent is split off to the MS and then diluted with a makeup solvent.
- Because of this difference, the major charge state shifts when scaling up from the analytical to a preparative separation. Therefore, to obtain analytical data which predicts the preparative results, the concentration and solvent composition must be equivalent for both scales. A simulated preparative run, with similar overloading of the sample, on analytical column (4.6 mm) is necessary.

Scaling the Split Ratio

- This exact change in split ratio was accomplished using the Waters AFS set to the same setting (Split Value #3) for both the injections.
 - Aliquot Transfer
- This is possible because the split ratio is based on a volume taken from the main stream per unit time.
- The change in flow rate is inversely proportional to the change in the split ratio.
- Flow rate to the MS is constant.

$$QT = QMu + Vs/t$$

Where QT is the total flow, QMu is the makeup flow and Vs/t is the split volume per unit time

• The sample concentration entering the MS is equal for both scales. At the analytical scale, 1/4.7 (0.21) of the sample is injected, but 4.7times more is split from the main stream.

Schematic of the

Waters AFS

Simulated Preparative Scale (Analytical Column Overload)

213 nanomoles on the 4.6 mm column with a 1:12 mass split and 1:1 dilution with the makeup pump.

- The chromatography and spectra are now comparable between both scales
- The target mass for mass-triggered fractionation is identified as the 22⁻ charge state (m/z = 851.4)

Mass-Directed Purification Results

Preparative injection of a 1 µmole 60-mer oligonucleotide synthesis on the 10 mm column.

- The m/z chromatogram for the 22⁻ charge state (m/z = 851.4) shows a resolved target peak to be identified under the unresolved UV peak
- Fractionation is triggered from the m/z chromatogram
- The target is collected over 2 fractions based on volume
- The UV peak is still unresolved, even after splitting and diluting with the makeup pump

Fraction Reanalysis

Overlay of the crude sample TIC and the TICs of the 2 fractions. 20 μ L of each fraction injected from collection vessel onto the 4.6 mm column.

Options for Improving Fraction Purity

- Increase collection threshold
 - Cost = Decrease recovery
- Decrease the gradient slope (i.e. 0.1% MeOH increase/minute) for a better separation
 - Cost = increased run time, decreased throughput, and greater solvent

Summary

- Purification of long-chain synthetic oligonucleotides is possible using mass triggered fractionation.
- Chromatographic separation is maintained with column overloaded with sample.
- Advantages over current methodology
 - Up to a 2-fold increase in overall purification yield, as compared to using PAGE, while still meeting the purity requirement
- Previously acquired data from a 59 mer, with an average of 38 nmol recovery by PAGE, generated 65 nmol recovery with LC/MS. Also, a 49-mer with 50 nmol recovery by PAGE gave 137 nmol recovery with LC/MS.
 - Overall time required for purification is about
 5 hours with HPLC, as compared to the few days required for PAGE
- Simulating the preparative injection on an analytical column with the Waters AFS, provides a comparable chromatogram and spectrum to be expected for the actual preparative injection.
- This is especially critical for determining the target for mass-triggered fractionation, when the distribution of charge state changes.

References

- 1. S. Goforth, The Scientist, 2002 16[12]:43.
- J. Sambrook, D. W. Russell, <u>Molecular Cloning</u>
 <u>A Laboratory Manual</u> 3rd Edition, Cold Spring
 Harbor Laboratory Press, New York, 2001
- A. Apffel, J.A. Chakel, S. Fischer, K. Lichtenwalter, W.S. Hancock, Anal. Chem. 69 (1997) 1320.
- 4. M. Gilar, Anal. Biochem. 298 (2001) 196.

WATERS CORPORATION 34 Maple St. Milford, MA 01757 U.S.A. T: 508 478 2000 F: 508 872 1990 www.waters.com

Waters, Micromass, AutoPurification, ZQ and XTerra are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

©2003 Waters Corporation Produced in the U.S.A. June 2003 720000655EN LW-PDF

