COMPREHENSIVE PTM CHARACTERIZATION OF THE NIST MAB REFERENCE STANDARD USING A **HRMS MASS SPECTROMETRY**

Jaters THE SCIENCE OF WHAT'S POSSIBLE.

Jing Fang, Nilini Ranbaduge, Henry Shion, William Alley and Ying Qing Yu Waters Corporation, Milford MA 01757

INTRODUCTION

The NIST mAb RM 8671 reference standard material can function as a common standard for the biopharmaceutical industry, analytical instrument/software companies, and regulators. RM 8671 can be used to evaluate and improve current analytical technologies and capabilities for determining the physicochemical and biophysical attributes of monoclonal antibodies.

An exhaustive set of characterization data has been collected from QTOF and Orbitrap mass spectrometers and published (ACS Book series: "State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization").¹

In this study, we demonstrate the use of a new bench top IMS QTOF MS controlled by a workflow driven software for common PTM characterization of the new NIST mAb reference standard (RM 8671).

UPLC/Optical/Vion IMS QTOF MS System

- controlled by a complaint ready software

2. Intact Protein Analysis (Major Glycoforms)

5.5 ppm FA2/FA2G1 148199.2 3.9 ppm FA2/FA2 148036.8 FA2/FA 147832.8 1.484e5 lass [Da]

RESULTS

3. Subunit Analysis (Glycoforms, and Global Glycation Measurements)

Figure 3. MaxEnt 1 deconvoluted subunit data are show here. The glycan distribution from the ScFc subunit is highly similar to the released glycan profile (see Figure 1.); the global glycation level for the LC and Fd region were measured at 3.2% and 2.2% respectively

4. Peptide Mapping (PTM Analysis)

C-terminal Lysine Truncation

Figure 4. C-terminal lysine truncation was calculated to be 95%. Quantitation in UNIFI can be performed in two ways: 1) combined ion counts from all charge states; or 2) from only one charge state. The C-terminal tryptic peptide with lysine shows a dominant charge state at +2, while the truncated version has the +1 as the dominant ions. Therefore, quantitation using sum of all charge states provides more accuracy for the modification% calculation

Deamidation

Chain	Position	Mod%	Line and Will Revenue and Line Advantage (1974)
н	N78	0.19	
н	N86	0.09	
н	N162	0.21	Image: Name Image: Name
н	N279 or N289	0.22	
н	N318	0.33	Mill Mill <td< td=""></td<>
н	N328	N/A	
н	N387	1.98	
н	N392		Figure 5. Identified deamidation sites and modification%
Н	N437	1.27 (new)	summarized in the table above. Deamidation at N437 v
L	N136	0.20	The XICs and spectra above are examples of chroma
L	N151	0.28	graphically separated D and isoD forms of the light ch
L	N157	0.43	peptide that were dearnidated at position N136.

Glycation Site Occupancy

METHODS

Instrumentation:

ACQUITY UPLC H-Class Bio BEH C4, 2.1x 50 mm (intact protein/subunit) BEH 300 C18, 2.1x100 mm (peptide mapping) BEH amide column 2.1x 150 mm (released glycan with FLR label) ACQUITY UPLC TUV ACQUITY UPLC FLR Vion IMS QTOF MS Data acquisition modes: MS, DDA, DIA (MS^E, HDMS^E) Instrument Control Software and data processing: UNIFI Workflows in UNIFI used : Intact Protein, Glycan and Peptide Mapp

Sample Preparations:

Released Glycan: Glycoworks RapiFluor-MS Glycan Kit was used for glycan preparation.² The final products are RapiFluor-MS labeled N-Glycans from NIST mAb.

Intact mAb Analysis:

NIST mAb was diluted in 25 mM ammonium acetate Injection amount: 0.1 μg for intact protein analysis

Subunit Analysis:

Genovis FabRICATOR (Ides) enzyme used for digestion

Peptide Mapping:

NIST mAb was reduced and alkylated (IAM) under guandine-HCl denaturing conditions. Desalting of the alkylated protein was performed using an NAP-5 cartridge, followed by a 30-minute trypsin digestion

Figure 1. N-linked glycans from NIST RM 8671 were released and labeled with RapiFluor-MS tag. These glycans were analyzed using a HILIC-UPLC/FLR/MS system for quantification (using FLR integrated peak areas) and identification using an RFMS Glycan GU Scientific library.

Peptide ID and quantitation	Mod%	Residue & Position	Chain	
 Mass accuracy for precurs Minimum of 3 b/y ions 	0.08 (new)	K13	н	
 Peptide quantitation was a charges from MS^E acquisition 	0.24	К58	н	
4. mod% calculation (see the	N⁄A	K66	н	
	0.46	K77	н	
mac% = macified peptide	0.42	K136	н	
	0.43	K255	н	
	0.32	K249	н	
Figure 6. A summary of	0.53	K251	н	
relative percent glycation peptides were confirmed	0.05	K291 or K293	н	
new glycation sites were The annotated fragment	2.73	K329	н	
onstrate the assignmen	0.4	K38, K41	L	
ously in the ACS book cl	0.09	K44	L	
	4.77	К52	L	
Example: Annotated fragmentatio	0.59	K102	L	
Component same 2720-238 Caluminianity C (2) (#7); Operating (24) (#7) Label 2720-238	0.27 (new)	K125	L	
amm.	0.59	K148	L	
1000- 1000- 1000- 1000-	0.54	K168	L	
ĵ=	0.91	K182	L	
2000- 5003805 500380 5000 5005 5005 5005 5005 5005 5005 5005	1.97	K187	L	
8 230 300 756 3000 L256	0.12	К189	L	
		1/2015		

criteria

sor and fragment ions (< 5 ppm) achieved with ion counts from all equation below

f peptide ion counts + unmodified peptide (cri counts)

all identified glycation sites and on is shown here. All glycated d by MSMS fragmentation. Two identified in this study. ntation spectrum is used to dem-nt of the Lysine-251 containing t this site was not reported previ hapters.

Oxidation (Met)

Chain	Residue & Position	Mod%		
н	M34	2.6		
н	M87	0.45		
н	M101	1.64		
н	M255	2.08		
н	M361	4.04		
н	M431	0.33		
L	M4	0.67		
L	M32	0.47		

Figure 7. Oxidation sites and oxidation percentages are summarized in the table.

5. Future Work: Utilizing Ion Mobility Separation
Significant reduction in LC/MS run times
Reducing interfering ions for precursor and fragment ions
Automated CCS value generation for all peptide components

Co	Component Summary •								
-11	Component name	Fragment label	Peptide	Observed m/z	Doserved CCS (A*)	observed drift (ms)	Observed RT (min)	Response	Modifiers
8	1:T14+H*	1:114	VDNALQSGNSQESVTEQDSK	712.6606	657.95	7.96	9.13	5567018	
9	2/T38 (H*	2:T38	TTPPVLDSDGSFFLYSK	937.4659	574.79	10.33	13.17	34854564	
10	2/T148:Carbamidomethyl C [11]+H*	2:T148	STSGGTAALGCLVK	661.3440	485.11	8.80	11.20	22920910	Carbamidomethyl C [11]
11	1:110+11*	1:110	TVAAPSVHIPPPSDLQLK	973.5181	595.02	10.67	13.71	24769646	
12	1:T188:Carbamidomethyl C [4]+H*	1:T188	VYACEVTHQGLSSPVTK	625.9808	642.17	7.78	10.12	28832840	Carbamidomethyl C [4]
13	2:T208:Carbamidomethyl C (2) [4 7]+H*	2:T208z	THTCPPCPAPELLGGPSVFLFPPKPK	711.8705	995.34	9.05	13.61	51108780	Carbamidomethyl C (2) [4
14	2/112+H*	2.112	DMJFNFYFDVWGQGTTVTVSSASTK	934.4421	833.04	10.02	15.28	3645907	
15	1:115+8*	1:115	DSTYSLSSTETLSK	751.8853	517.06	9.35	11.83	12260442	

Figure 8. 3D-view of the NIST mAb peptide mapping data collected in HDMS^E mode (data independent acquisition mode with ion mobility separation). One of the advantages of HDMS^E mode of acquisition is to reduce the LC gradient time (to 10 min) without sacrificing of sequence coverage. In addition, CCS and drift time values for each peptide component were automatically generated and saved into a scientific library. CCS values along with other analytical measurements such as LC retention time, m/z, and z are character istic to each peptide component, therefore, can be used as search parameters for targeted data processing.

References

- Schiel et al.; State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 1-3. ACS Symposium Series; American Chemical Society: Washington, DC, 2014.
- Lauber et al: Rapid Preparation of Released N-Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates 2. nsitive Fluorescence and ESI-MS Detection, Anal. Chem., 2015, 87 (10), 540

CONCLUSIONS

- NIST RM 8671 was characterized using the latest Vion/IMS QTof MS system controlled by UNIFI Scientific Informatics System.
 - Established analytical workflows with UNIFI were used for the comprehensive analysis of this reference standard and included:
 - Accurate MW measurements for major glycoforms \Rightarrow achieved at the intact protein level.
 - Glycation levels in the LC and Fd region by subunit \Rightarrow analysis.
 - A thorough investigation of PTMs, including C-terminal \Rightarrow lysine truncation, deamidation, oxidation, and glycation.
 - N-linked glycan profiling using RapiFluor-MS tagging \Rightarrow chemistry and an RFMS Glycan GU library built into UNIFI.
- Attributes from the characterization data can be incorporated in targeted monitoring for mAb development and QC (see P-131-W).
- Future work will be focused on utilizing CCS values (from IMS) and accurate mass information to monitor critical quality attributes for biologics.

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS