LC/MS/MS ANALYSIS OF URINARY BENZODIAZEPINES AND Z-DRUGS VIA A SIMPLIFIED, MIXED-MODE SAMPLE **PREPARATION STRATEGY FOR CLINICAL RESEARCH**

Jonathan P. Danaceau and Erin Chambers Waters Corporation, Milford, MA, USA

INTRODUCTION

Benzodiazepines are commonly prescribed drugs used for their sedative, anxiolytic, and hypnotic properties.¹ Nationally, overdose deaths from benzodiazepines have risen 600% from under 1,600/year in 2001 to 8,000 in 2014, greater than any other drug class with the exception of heroin.² So-called "Zdrugs" (zolpidem and zopiclone) are commonly used sleep aids that act in a similar manner to benzodiazepines.¹ While the use of LC/MS/MS for benzodiazepine analysis has increased in recent years, many published techniques still rely on labor intensive liquid-liquid extraction techniques.³⁻⁵

The objective of this study was to develop a simplified sample preparation and LC/MS/MS analysis strategy for these compounds for clinical research. Strong cation exchange micro elution plates were used to rapidly extract these compounds from urine samples. All sample preparation steps, including enzymatic hydrolysis, were performed within the wells of the µElution plates, and the extraction method is simplified by eliminating conditioning and equilibration steps.

METHODS

200 µL of urine was added to individual wells of a Waters Oasis[®] MCX µElution SPE plate, along with internal standards, hydrolysis buffer and β glucuronidase enzyme. 20 deuterated internal standards were used for quantification. Samples were incubated for 1 hr. at 50 °C. After incubation, samples were quenched with 200 μ L of 4% H₃PO₄ and directly loaded onto the sorbent bed by vacuum. All samples were subsequently washed with 200 μ L of 0.02 N HCl, and 200 µL of 20% MeOH. Samples were eluted with 2 x 25 µL of 60:40 ACN:MeOH containing 5% strong ammonia solution and then diluted with 100 μ L of sample diluent (2% ACN:1% formic acid in

Table 1. Mobile phase gradient

Time (min)	Flow (mL/min)	% MPA	% MPB
initial	0.5	90	10
5.00	0.5	50	50
5.25	0.5	5	95
6.00	0.5	5	95
6.10	0.5	90	10
7.50	0.5	90	10

MS Conditions

MS System	Waters Xevo [®] TQ-S micro
Ionization Mode	ESI Positive
Capillary Voltage	0.5 kV
Desolvation Temp	500 °C
Desolvation Flow	150 L/hr
Source Temp	150 °C
MRM Conditions	Optimized for individual compounds

	Compound	RT	M+H ⁺	1° MRM Product Ions	Cone Volt- age	Colli- sion Energy
	N-desmethyl					
1	Zopiclone	1.06	375.1	245.0	6	14
2	Zopiclone	1.12	389.1	245.0	8	12
3	Zolpidem	1.61	308.1	235.1	34	32
4	7-amino- clonazepam	1.91	286.1	121.0	50	26
5	Flurazepam	2.31	388.2	315.1	40	26
6	7-amino- flunitrazepam	2.35	284.1	135.0	34	26
7	Chlordiazepoxide	2.34	300.0	227.0	34	20
8	Midazolam	2.53	326.0	291.0	16	36
9	a-OH-midazolam	2.90	342.0	203.0	2	24
10	a-OH-triazolam	3.76	359.0	176.0	28	24
11	a-OH-alprazolam	3.77	325.1	297.1	50	25
12	Oxazepam ¹	3.84	289.0	103.9	50	30
13	Nitrazepam	3.86	282.1	180.1	50	36
14	Lorazepam	4.00	321.0	277.0	50	20
15	Clonazepam	4.09	316.0	214.1	54	42
16	Alprazolam	4.35	309.1	205.0	50	40
17	Nordiazepam	4.36	271.0	140.0	50	30
18	Flunitrazepam	4.41	314.1	239.2	50	30
19	Temazepam	4.44	301.1	177.0	36	46
20	Triazolam	4.47	343.0	308.0	28	24

ters

THE SCIENCE OF WHAT'S POSSIBLE.

Extraction Recovery

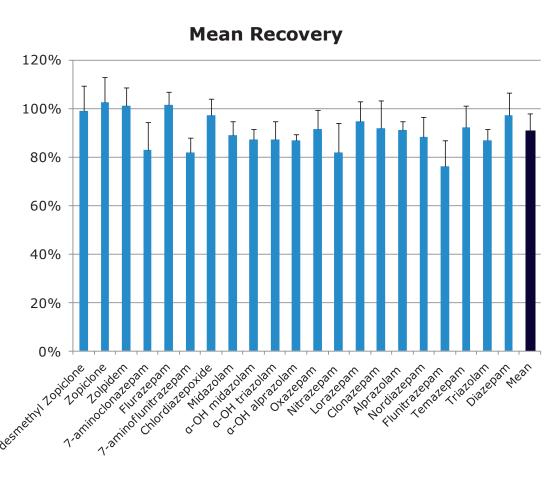
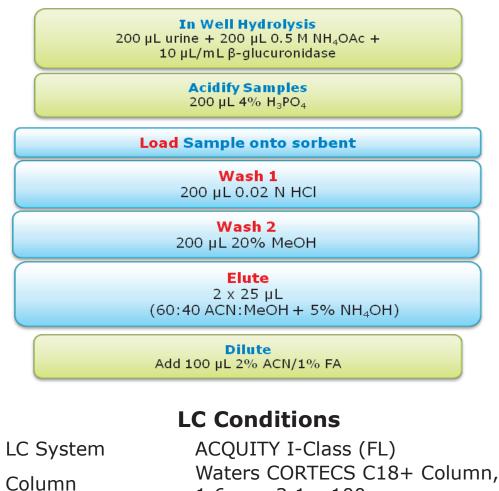


Figure 4. Composite extraction recovery of benzodiazepines and Z-drugs using Oasis MCX µElution plates. N = 4 separate extractions

Inter-batch Quality Control Results


	QC 7	7.5	QC	QC 75		QC 300	
Name	Mean	%CV	Mean	%CV	Mean	%CV	
N-desmethyl							
zopiclone	96.7%	2.4%	96.6%	2.9%	97.1%	4.7%	
Zopiclone	96.7%	3.4%	98.0%	2.8%	96.2%	3.5%	
Zolpidem	98.8%	1.5%	95.8%	1.1%	91.7%	1.6%	
7-amino clonazepam	95.6%	1.0%	93.8%	2.4%	95.1%	2.0%	
Flurazepam	97.6%	4.3%	99.3%	7.4%	97.6%	5.0%	
7-amino flunitrazepam	93.7%	2.3%	96.1%	4.7%	97.0%	3.2%	
Chlordiazepoxide		2.1%	99.3%	1.5%	98.4%	3.2%	
Midazolam	104.2%	5.4%	102.1%	3.1%	98.9%	2.0%	
a-OH midazolam	102.5%	4.7%	100.8%	5.0%	99.1%	2.5%	
a-OH triazolam	98.8%	4.9%	98.3%	4.9%	95.1%	2.6%	
a-OH alprazolam	101.4%	2.2%	99.1%	5.9%	97.7%	2.4%	
Oxazepam	98.5%	4.1%	98.2%	4.7%	97.6%	4.6%	
Nitrazepam	95.8%	1.3%	95.7%	2.4%	98.1%	1.8%	
Lorazepam	100.2%	4.2%	100.8%	5.4%	98.7%	4.9%	
Clonazepam	98.2%	3.0%	97.5%	3.3%	95.2%	4.5%	
Alprazolam	94.6%	4.7%	95.0%	4.6%	98.8%	4.5%	
Nordiazepam	106.7%	3.7%	101.7%	4.6%	95.4%	5.2%	
Flunitrazepam	98.2%	2.8%	96.3%	2.6%	96.3%	7.8%	
Temazepam	101.6%	1.2%	97.5%	2.8%	94.7%	1.8%	
Triazolam	102.4%	2.3%	99.9%	3.2%	98.2%	3.4%	
Diazepam	103.8%	2.1%	99.6%	4.1%	94.9%	7.6%	
Mean	99.3%		98.2%		96.8%		

water).

5 µL of each sample was injected and analyzed by UPLC/MS/MS using a Waters' Cortecs C18+ column $(1.6 \ \mu\text{m}; 2.1 \ \text{x} \ 100)$ and a Xevo[®] TO-S micro mass spectrometer.

Calibrators were prepared in blank urine at concentrations ranging from 0.5-500 ng/mL. Quality control samples were prepared at 4 concentrations than covered the calibration range.

Figure 1. Extraction procedure for benzodiazepines and Z-drugs

- Column Temp Sample Temp
- 1.6 µm, 2.1 x 100 mm 30 °C 10 °C 5 µL Injection Vol. Flow Rate 0.5 mL/min Mobile Phase A 0.01% formic acid in water Mobile Phase B 0.01% formic acid in ACN

20	TTIazulatti	1117	545.0	500.0	20	27
21	Diazepam	5.13	285.1	154.0	50	26

RESULTS

Chromatography

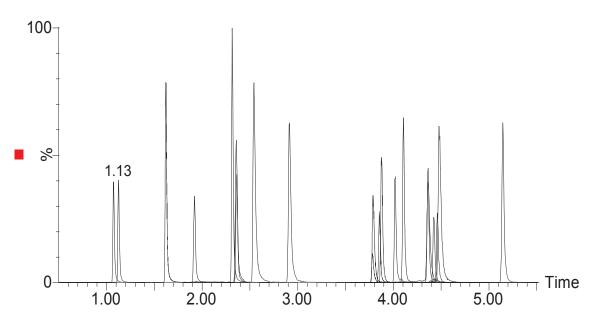


Figure 2. Chromatography of benzodiazepines and Zdrugs from an extracted calibration standard.

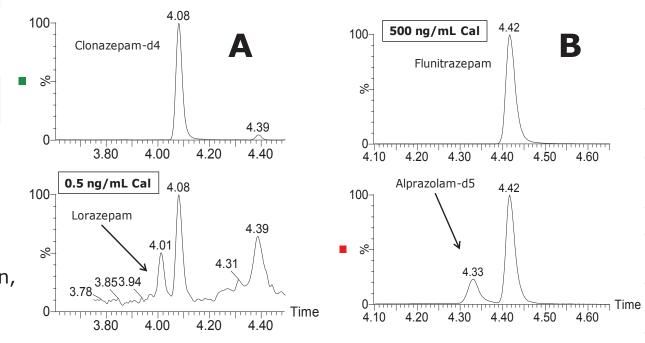


Figure 3. Separation of critical pairs on the CORTECS C18+ column. A. Clonazepan-d4 does not interfere with lorazepam, even at the lowest calibrator. **B.** Flunitrazepam, even at 500 ng/mL does not interfere with alprazolam-d5.

Table 3. Quality control results from 4 separately
 extracted batches. Mean values show the average for each compound and the average for all compounds at each QC level. Individual batches had accuracies mostly within 10% of target values and %CVs under 10%

CONCLUSIONS

- Accurate, quantitative analysis of a broad panel of benzodiazepines and z-drugs for clinical research
- Rapid, simplified sample preparation of urinary benzodiazapines
- Baseline separation of all critical analyte pairs
- All sample pretreatment and extraction performed in -well, eliminating transfer steps
- Concentration on the SPE device. No need for evaporation and reconstitution
- High and consistent recovery for all compounds
- Excellent accuracy and reproducibility

For research use only. Not for use in diagnostic procedures

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS