LC/MS/MS ANALYSIS OF URINARY BENZODIAZEPINES AND Z-DRUGS VIA A SIMPLIFIED, MIXED-MODE SAMPLE PREPARATION STRATEGY

THE SCIENCE OF WHAT'S POSSIBLE.

Jonathan P. Danaceau and Erin E. Chambers Waters Corporation Milford, MA, USA

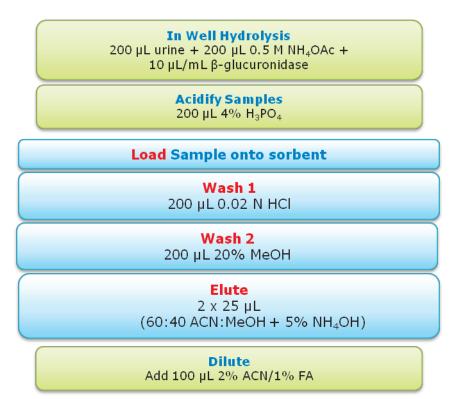
INTRODUCTION

Benzodiazepines are commonly prescribed drugs used for their sedative, anxiolytic, and hypnotic properties.¹ Nationally, overdose deaths from benzodiazepines have risen 600% from under 1,600/year in 2001 to 8,000 in 2014, greater than any other drug class with the exception of heroin.² So-called "Z-drugs" (zolpidem and zopiclone) are commonly used sleep aids that act in a similar manner to benzodiazepines. While the use of LC/MS/MS for benzodiazepine analysis has increased in recent years, many published techniques still rely on labor intensive liquid-liquid extraction techniques.³⁻⁵

The objective of this study was to develop a simplified sample preparation and LC/MS/MS analysis strategy for these compounds. Strong cation exchange micro elution plates were used to rapidly extract these compounds from urine samples. All sample preparation steps, including enzymatic hydrolysis, were performed within the wells of the µElution plates, and the extraction method is simplified by eliminating conditioning and equilibration steps.

This method analyzes 18 benzodiazepine drugs and metabolites, along with zolpidem, zopiclone and Ndesmethyl zopiclone.

METHODS


Extraction Procedure

200 µL of urine was added to individual wells of a Waters Oasis® MCX µElution SPE plate, along with internal standards, hydrolysis buffer and β glucuronidase enzyme. 20 deuterated internal standards were used for quantification. Samples were incubated for 1 hr. at 50 °C. After incubation samples were guenched with 200 µL of 4% H₃PO₄ and directly loaded onto the sorbent bed by vacuum. All samples were subsequently washed with 200 µL of 0.02 N HCl, and 200 µL of 20% MeOH. Samples were eluted with $2 \times 25 \mu L$ of 60:40 ACN:MeOH containing 5% strong ammonia solution and then diluted with 100 µL of sample diluent (2% ACN:1% formic acid in water).

5 μL of each sample was injected and analyzed by UPLC/MS/MS using a Waters' Cortecs C18+ column (1.6 μ m; 2.1 x 100) and a Xevo[®] TQ-S micro mass spectrometer.

Calibrators were prepared in blank urine at concentrations ranging from 0.5-500 ng/mL Quality control samples were prepared at 4 concentrations than covered the calibration range.

Figure 1. Extraction procedure for benzodiazepines and Z-drugs

LC Conditions

LC System	ACQUITY I-Class (FL)
Column	Waters CORTECS C18+ Column, 1.6 µm, 2.1 x 100 mm
Column Temp	30 °C
Sample Temp	10 °C
Injection Vol.	5 μL
Flow Rate	0.5 mL/min

0.01% formic acid in water

0.01% formic acid in ACN

Table 1. Mobile phase gradient

Time (min)	Flow (mL/min)	% MPA	% МРВ
initial	0.5	90	10
5.00	0.5	50	50
5.25	0.5	5	95
6.00	0.5	5	95
6.10	0.5	90	10
7.50	0.5	90	10

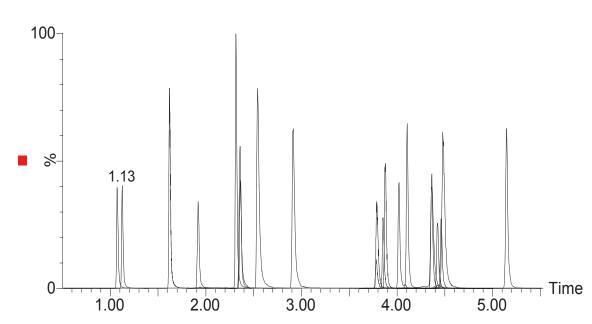
MS Conditions

Mobile Phase A

Mobile Phase B

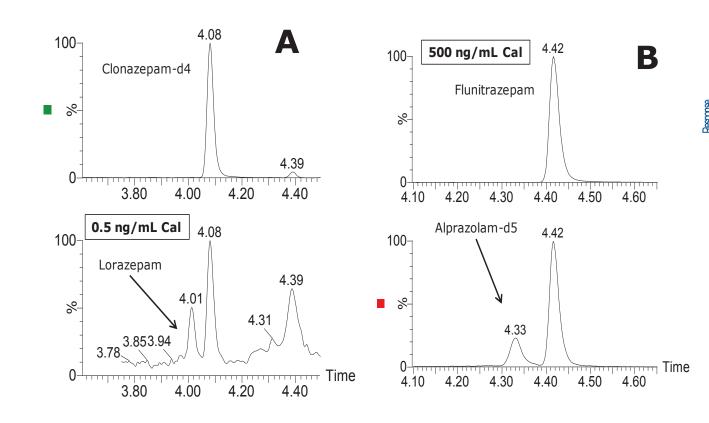
MS System	Waters Xevo® TQ-S micro
Ionization Mode	ESI Positive
Capillary Voltage	0.5 kV
Desolvation Temp	500 °C
Desolvation Flow	150 L/hr
Source Temp	150 °C
MRM Conditions	Optimized for individual compounds

MS Conditions and Retention Times


Waters Xevo® TQ-S micro

				MRM Product	Cone Volt-	Colli- sion
	Compound	RT	$M+H^+$	Ions	age	Energy
	N-desmethyl					
1	Zopiclone	1.06	375.1	245.0	6	14
2	Zopiclone	1.12	389.1	245.0	8	12
3	Zolpidem	1.61	308.1	235.1	34	32
	7-amino-					
4	clonazepam	1.91	286.1	121.0	50	26
5	Flurazepam	2.31	388.2	315.1	40	26
	7-amino-					
6	flunitrazepam	2.35	284.1	135.0	34	26
7	Chlordiazepoxide	2.34	300.0	227.0	34	20
8	Midazolam	2.53	326.0	291.0	16	36
9	a-OH-midazolam	2.90	342.0	203.0	2	24
10	α-OH-triazolam	3.76	359.0	176.0	28	24
11	α-OH-alprazolam	3.77	325.1	297.1	50	25
12	Oxazepam ¹	3.84	289.0	103.9	50	30
13	Nitrazepam	3.86	282.1	180.1	50	36
14	Lorazepam	4.00	321.0	277.0	50	20
15	Clonazepam	4.09	316.0	214.1	54	42
16	Alprazolam	4.35	309.1	205.0	50	40
17	Nordiazepam	4.36	271.0	140.0	50	30
18	Flunitrazepam	4.41	314.1	239.2	50	30
19	Temazepam	4.44	301.1	177.0	36	46
20	Triazolam	4.47	343.0	308.0	28	24
21	Diazepam	5.13	285.1	154.0	50	26

Table 2. Individual MS conditions and retention times


RESULTS

Chromatography

Figure 2. Chromatography of benzodiazepines and Zdrugs from an extracted calibration standard. Conditions are detailed in Materials and Methods. Retention times are listed in Table 2.

Separation of critical pairs

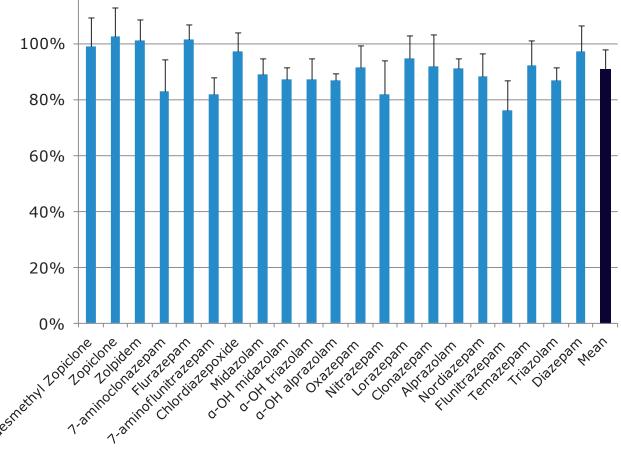


Figure 3. Selected chromatograms from the Cortecs C18+ column. A. Clonazepan-d4 does not interfere with lorazepam. even at the lowest calibrator. **B.** Flunitrazepam, even at 500 ng/mL does not interfere with alprazolam-d5.

Extraction Recovery

120%

Mean Recovery

Figure 4. Extraction recovery of benzodiazepines and Zdrugs using Oasis MCX μ Elution plates. N=4 separate extractions

References

- Jufer-Phipps, R., B. Levine: Benzodiazepines. In: Principles of Forensic Toxicology, B. Levine (Eds). AACC Press, Washington, D.C. 237-270 (2013).
- Karithanom, M. Number of Deaths from Prescription Drugs, National Institute of Drug Abuse, National Overdose Deaths, CDC Wonder, (2015).
- Laloup, M. et al. Journal of Analytical Toxicology 29(7), 616-626 (2005). Marin, S.J. et al. Journal of Analytical Toxicology 32(7), 491-498 (2008).
- Marin, S.J. et al. Journal of Analytical Toxicology 36(7), 472-476 (2012)

Representative Calibration Curves

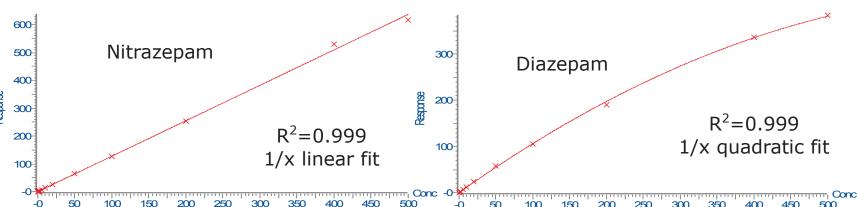


Figure 5. Calibration curves ranged from 0.5-500 ng/mL. The minimum r² value was 0.997 and all mean % deviations from the curves were less than 10%.

Inter-batch Quality Control Results

	QC 1.5		QC 7.5		QC	QC 75		QC 300	
Name	Mean	%CV	Mean	%CV	Mean	%CV	Mean	%CV	Mean
N-desmethyl zopiclone	99.2%	3.8%	96.7%	2.4%	96.6%	2.9%	97.1%	4.7%	97.4%
Zopiclone	97.7%	3.2%	96.7%	3.4%	98.0%	2.8%	96.2%	3.5%	97.2%
Zolpidem	99.4%	3.4%	98.8%	1.5%	95.8%	1.1%	91.7%	1.6%	96.4%
7-aminoclonazepam	100.4%	1.9%	95.6%	1.0%	93.8%	2.4%	95.1%	2.0%	96.2%
Flurazepam	103.6%	7.1%	97.6%	4.3%	99.3%	7.4%	97.6%	5.0%	99.5%
7-aminoflunitrazepam	99.3%	2.3%	93.7%	2.3%	96.1%	4.7%	97.0%	3.2%	96.5%
Chlordiazepoxide	100.5%	1.1%	100.3%	2.1%	99.3%	1.5%	98.4%	3.2%	99.6%
Midazolam	103.7%	4.4%	104.2%	5.4%	102.1%	3.1%	98.9%	2.0%	102.2%
a-OH midazolam	103.4%	4.3%	102.5%	4.7%	100.8%	5.0%	99.1%	2.5%	101.4%
a-OH triazolam	101.5%	8.4%	98.8%	4.9%	98.3%	4.9%	95.1%	2.6%	98.4%
α-OH alprazolam	104.4%	9.6%	101.4%	2.2%	99.1%	5.9%	97.7%	2.4%	100.7%
Oxazepam	100.4%	4.3%	98.5%	4.1%	98.2%	4.7%	97.6%	4.6%	98.7%
Nitrazepam	102.0%	6.2%	95.8%	1.3%	95.7%	2.4%	98.1%	1.8%	97.9%
Lorazepam	100.3%	6.9%	100.2%	4.2%	100.8%	5.4%	98.7%	4.9%	100.0%
Clonazepam	102.0%	4.9%	98.2%	3.0%	97.5%	3.3%	95.2%	4.5%	98.2%
Alprazolam	107.0%	8.7%	94.6%	4.7%	95.0%	4.6%	98.8%	4.5%	98.9%
Nordiazepam	106.1%	9.0%	106.7%	3.7%	101.7%	4.6%	95.4%	5.2%	102.5%
Flunitrazepam	101.8%	8.1%	98.2%	2.8%	96.3%	2.6%	96.3%	7.8%	98.1%
Temazepam	102.9%	7.3%	101.6%	1.2%	97.5%	2.8%	94.7%	1.8%	99.2%
Triazolam	104.4%	8.4%	102.4%	2.3%	99.9%	3.2%	98.2%	3.4%	101.2%
Diazepam	104.3%	6.5%	103.8%	2.1%	99.6%	4.1%	94.9%	7.6%	100.6%
Mean	102.1%		99.3%		98.2%		96.8%		

Table 3. Quality control results from 4 separately extracted batches. Mean values show the average for each compound and the average for all compounds at each QC level. Individual batches had accuracies mostly within 10% of target values and % CVs under 10%

CONCLUSIONS

- Accurate, quantitative analysis of a broad panel of benzodiazepines and z-drugs
- Rapid, simplified sample preparation of urinary benzodiazapines
- Baseline separation of all critical analyte pairs
- All sample pretreatment and extraction performed in-well, eliminating transfer steps
- Concentration on the SPE device. No need for evaporation and reconstitution
- High and consistent recovery for all compounds
- Excellent accuracy and reproducibility