A METABOLOMICS APPROACH TO CHARACTERIZE RAW, PASTEURIZED AND ULTRA-HIGH **TEMPERATURE MILK USING UPLC-QTOF-MS AND MULTIVARIATE DATA ANALYSIS**

Zhang Yangdong^{1,4}, Nan Zheng^{1,4}, Zhengwei Jia², Xiaojie Tan², Naren Meruva³, Gareth Cleland³, Fang Wen^{1,4}, Songli Li^{1,4}, Shengguo Zhao^{1,4}, Jennifer Burgess³, Jiagi Wang^{1,4} ¹ Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China ² Waters China, Shanghai, China

³ Waters Corporation, Milford, MA, USA

⁴ State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China

INTRODUCTION

In this study UPLC-QTOF-MS integrated with multivariate data analysis was applied to investigate the impact of heat treatment on milk composition and its nutritional quality. Bovine milk is heat treated to pasteurized milk (185.0°F, 15 s) and ultra high temperature (UHT) milk (278.6°F, 15 s) prior to human consumption and before it is processed into a variety of dairy products. Metabolomics studies in milk poses significant analytical challenges as bovine milk is a complex mixture of proteins, lipids, vitamins, carbohydrates and metal salts. The high resolution mass spectrometry (HRMS) based metabolite profiling workflow used in this study provides identification and quantification of wide range of milk metabolites.

Three different milk samples (fresh, pasteurized and UHT milk, 10 replicates) and a pooled composite sample (1:1:1 ratio) were investigated. Samples from different groups were centrifuged to remove the top fat layer and the proteins in skimmed milk were precipitated. The supernatant was analyzed in a random order using UPLC-QTOF-MS in electrospray positive and negative modes.

Figure 1. Raw, pasteurized and UHT milk samples used in this metabolomics experiment.

METHODS

UPLC Conditions:

LC system : ACQUITY UPLC I-Class				
Column temperature : 40 °C				
Sample temperature : 10 °C				
Injection volume : 5 mL				
Flow rate : 0.50 mL/min				
Mobile phase A : 0.1% Formic acid in water				
Mobile phase B : 0.1% Formic acid in ACN				
Column · HSS T3, 2,1*100 mm, 1,8 um				

Time	Flow	%A	%B	Curve
Initial	0.5	99	1	Initial
10.0	0.5	5	95	6
12.0	0.5	5	95	6
13.0	0.5	1	99	6
13.1	0.5	99	1	6
15.0	0.5	99	1	6

MS Conditions:

MS system : QTOF-MS Ionization mode : ESI+/ESI-Capillary voltage : 1.0 KV Cone voltage : 30.0 V Cone gas : 50 L/h Source temperature : 150 °C Desolvation temperature : 550 °C Desolvation gas flow : 1000 L/h Acquisition mode : MS^E Low CE : 4 eV High CE : 10-50 eV Acquisition Range : 50-1200

Informatics Software:

Data Acquisition: MassLynx Data Processing: Progenesis QI

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

Figure 2. Chromatograms of raw, pasteurized, UHT and pooled milk samples using UPLC/QTOF-MS in ESI+ ionization mode.

Figure 3. Chromatograms of raw, pasteurized, UHT and pooled milk samples using UPLC/QTOF-MS in ESI- ionization mode.

RESULTS AND DISCUSSIONS

aters THE SCIENCE OF WHAT'S POSSIBLE.

Principal Component Analysis

Marker Selection:

Loadings Plot helps identify prominent markers in different groups of samples which can

Progenesis has tools for structural elucidation, determination of elemental composition and search capabilities using chemical databases such as metascope, chemspider,

Identify Compounds	Search parameters	5		
Select your identification method:	Trass within:	ppm +		
Progenesis MetaScope	Retention time within:	0.1	minutes -	
Filter the compounds	¥⊡ CCS within:	2.5	S	
only those you want to identify.	Additional compound properties source			
Choose search parameters	Read additional compound properties from this file			
 Select your MetaScope search parameters or create a new parameter set: 	<no database="" selected=""></no>			
ChEBI • Edit •	Fragment search method			
	Do not use fragmentation data			
Search for identifications	Perform theoretical fragmentation			
 Identifications will be assigned to the relevant compounds automatically. 	Relative mass error:	ppm		
Search for identifications	C Perform fragment database sean			
	<no database="" selected=""></no>		Browse	
Tag filter applied Edit	Mass within:	5	ppm -	

- A combination of UPLC separation, QTOF-MS detection and informatics (Progenesis QI) was used to identify metabolites in different milk samples to evaluate the impact of heat
- Method development and proof of principle is demonstrated. Several metabolites that show significant differences between raw, pasteurized and UHT milk were identified for further

Description	Compound (m/z)	Adducts	Formula	Score (out of 60)	Mass Error (ppm)	Isotope Similarity	Max Fold Change
Glycerophosphocholine	257.1032n	M+K, M+Na	C8H20NO6P	50.8	1.48	95.04	65.43
Cytosine	112.0510m/z	M+H	C4H5N3O	43.9	3.79	98.47	20.88
6-Hydroxynicotinic acid	140.0343m/z	M+H	C6H5NO3	54.6	0.86	97.99	1423.50
Xanthylic acid	364.0414n	M+Na, M+K, M+H	C10H13N4O9P	40.3	-1.71	95.00	16.89