INTRINSIXTM—A NOVEL CALIBRATION APPROACH FOR PERFORMING QUANTITATIVE LC-MS/MS **ANALYSIS OF SERUM METHOTREXATE FOR** CLINICAL RESEARCH

Donald Cooper, Stephen Balloch, Billy Molloy, Lisa Calton and Gareth Hammond Waters Corporation, Stamford Avenue, Wilmslow, UK.

INTRODUCTION

The IntrinsiXTM workflow enables analysis of serum methotrexate using ¹³C-labeled analogs as internal calibrators. Results are generated from a single injection, eliminating batch analysis of calibrators and samples. Comparison studies with a conventional LC-MS/MS method using the same LC-MS/MS system provide confidence in the method. High dose methotrexate in combination with glucarpidase therapy requires selective quantification which immunoassay metabolite cross-reactivity can overestimate.

METHODS

Materials

- A methotrexate reference material and four ¹³C-labeled analogs were supplied by Cerilliant (Round Rock, TX, USA).
- Analogs were used to prepare a 4-point IntrinsiX calibration curve over the range 0.025-10 µmol/L.
- NEQAS (Nottingham, UK) and WEQAS (Cardiff, UK) provided EQA samples in serum for accuracy testing.

Methods

- Samples (50 μL) supplemented with internal calibrators
 Following CLSI-EP6-A, the method was shown to have a were pre-treated with methanol.
- Following mixing and centrifugation, an aliquot of Analytical sensitivity investigations indicate the method supernatant was diluted in water in a 96-well 2mL plate.
- Using a Waters ACQUITY I-Class FTN UPLC[®] system, samples were injected onto a 2.1 x 30 mm Waters ACQUITY UPLC HSS C₁₈ SB column using a water/methanol/ ammonium acetate separation and analyzed with a Waters Xevo® TQD tandem quadrupole mass spectrometer.
- The analysis time per sample was approximately 5.7 minutes injection-to-injection.

Internal Calibration

Four internal calibrators were simultaneously analyzed with methotrexate (Figure 1).

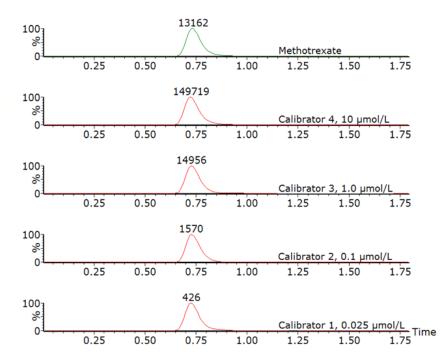


Figure 1. Example IntrinsiX chromatograms

• The acquired data was used to generate a sample associated calibration curve and determine the methotrexate concentration in the sample (Figure 2).

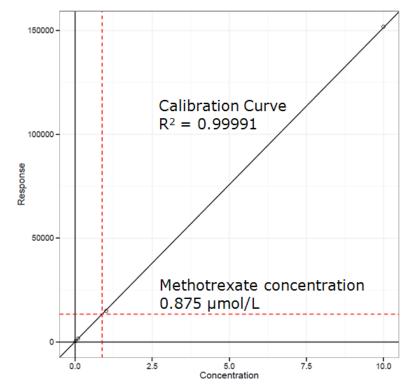


Figure 2. Calibration curve used to determine methotrexate concentration by IntrinsiX.

RESULTS

Linearity and analytical sensitivity

- linear fit over the range of 0.0175—13.0 µmol/L.
- would allow precise quantification ($\leq 20\%$) at 0.015 µmol/L.

Carryover

• No significant carryover was observed following analysis of serum samples with methotrexate levels up to 100 µmol/L.

Precision

• Five replicates at each QC level in plasma were prepared daily over five days (n=25; Table 1).

Nominal Concentration (µmol/L)	Total Precision (% RSD)	Repeatability (% RSD)
0.1	6.8	6.3
1.0	3.3	1.8
2.5	2.8	1.3
7.5	2.2	0.9

Table 1. Total precision and repeatability for the IntrinsiX analysis of methotrexate.

Accuracy

 Correlation between the IntrinsiX approach and the all laboratory trimmed mean (ALTM) of EQA samples was described by the Deming equation y=0.94x+0.03 (n=14, range 0.030-2.14 µmol/L). A small but statistically significant constant bias was detected (p≤0.05), but no significant proportional bias.

• Agreement between the IntrinsiX approach and a conventional LC-MS/MS method using the same LC-MS/MS system for analysis of EQA samples was described by the Deming equation y=0.99x-0.02 (n=23, range 0.025-2.18 µmol/L). A small but statistically significant constant bias was detected (p≤0.05), but no significant proportional bias (Figure 3).

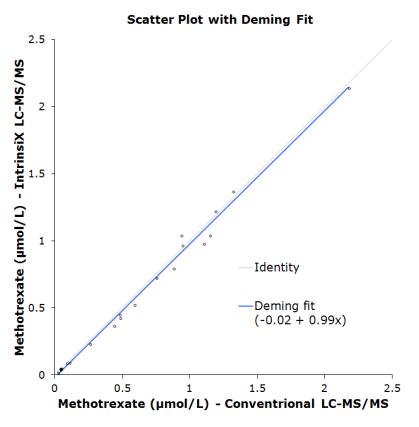


Figure 3. Deming fit of serum samples analysed by immunoassay and by the new IntrinsiX LC-MS/MS method.

Interference Testing

- Following CLSI EP7-A2, recovery of samples containing 0.1 or 1.0 µmol/L methotrexate (n=3) was unaffected (mean 101.0%, range 95.5-106.3%) when co-spiked with high concentrations of endogenous compounds (albumin, bilirubin, cholesterol, triglycerides or uric acid) or Intralipid[®].
- Similarly, recovery was unaffected (mean 101.1%, range 98.2-104.9%) when methotrexate pools were supplemented with 5 or 50 μmol/L 7-hydroxymethotrexate or 4-deoxy-4amino- N^{10} -methylpteroic acid (DAMPA; n=3), showing absence of interference from these metabolites.

CONCLUSION

- We have successfully implemented a novel calibration approach for performing quantitative LC-MS/MS analysis of serum methotrexate for clinical research.
- Incorporation of calibrators into test samples allows improved throughput, shorter time to first result and allows the possibility of nonbatched analysis.
- Samples are perfectly matrix-matched, as demonstrated by the excellent results of the interference testing (mean bias 101%).

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEURES. TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS