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OVERVIEW 

A matrix method solution of the Mathieu/Hill 
equation is applied to the harmonic case and a 
range of digital waveforms. 

Stability diagrams, simulated mass spectral 
peaks and transmission/peak width curves are 
calculated for the various waveforms. 

2D SIMION simulations are used to examine the 
effect of digital pulse period jitter. 

INTRODUCTION 

Digitally driven quadrupole mass filters offer a number of 

unique capabilities in comparison to conventional devices 
driven using analogue electronics. The flexibility inherent in the 

digital drive allows instantaneous changes in the duty cycle, 
frequency and even the form of the drive waveform. The 

ability to calculate and compare stability diagrams for differing 
digital pulse waveforms is critical to understanding these 

devices.  
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METHODS 

We have implemented the matrix method approach to solving 

the Mathieu/Hill equation [1]. This allows fast calculation of ion 

trajectories and stability diagrams for any periodically 
repeating quadrupolar field. For a given set of conditions we 

need only solve for two ion trajectories over a single RF period. 
1001 time points were used to model the waveform over the 

RF period. 
 

To plot stability diagrams we use the parameters q and a as 
defined by equations (1) and (2): 

 
 

 
 

 
 

 

 
 

 
Where VRF  and VDC are the RF and DC voltages in the harmonic 

waveform, U1 and U2 are the maximum values for the two 
digital pulses. There are various possible definitions of q and a 

for digital waveforms, the advantage of this definition is that 
the pulse voltage values U1 and U2 are dependent only on q 

and a, not on the duty cycle or other details of the waveform. 
 

Figure 1 shows the potentials for the digital waveforms 
compared in this work.  These are plotted for a=0, hence U1=-

U2. The rectangular signal shown has d=0.5 where d is the 
fraction of the period taken by the U1 pulse. The two constant 

portions of the trapezoidal pulse used here are each equal to 

1/6 of the total period. The middle of the W-wave is set to half 
the value of the corresponding voltage maxima. The rising/

falling edges of the trapezoidal and triangular pulses have a 
constant gradient, while the points at zero potential for the M/

W/U-waves are pinned to zero.  
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Figure 3 shows the boundary of the first stability region  for 

the harmonic, M-wave, W-wave and U-wave waveforms. These 
three waveforms behave quite differently to those of figure 2 

in that the stability diagrams are scaled in both q and a.  
 

The reason for this becomes clear when we consider the effect 
of non-zero a-values on these waveforms. Figure 4 shows the 

rectangular and M-wave waveforms for q=1, a=1, hence U1=-
3U2. Since the centres of the two “M” pulses are pinned to zero 

the M-wave potential is not simply shifted when a is non-zero. 
This means that for a given a-value the effective quadrupolar 

DC is significantly lower for M/W/U-waveforms. For example 
the quadrupolar DC is halved for the M-wave, this is clear from 

inspection of the M-wave and the rectangular potentials. 

Figure 10 shows simulated peaks examining the effect of 
temporal jitter on the pulse period for the rectangular d=0.5 

waveform at resolution settings for 0.3Da and 1Da peak 
widths. The jitter is applied as a +/- uniform spread about 

each pulse voltage change. 
 

For the 0.3Da peak width case we see minor effects at a jitter 
of 0.05ns. At 0.1ns jitter we see 78% relative transmission, 

while at 0.5ns we are down to 19% with a significant low mass 
tail. At 1Da peak width the system is slightly more tolerant, for 

0.1ns jitter we see 90% relative transmission, 40% at 0.5ns 
and 10% at 1ns. Both the 0.5ns  and 1ns peaks have low mass 

tails. 
 

These results suggest a minimum requirement of less than 1ns 

jitter for analytical performance to be maintained. In terms of 
the RF period this corresponds to < 1e-3 T.  

 

CONCLUSION 

   The matrix method allows for fast calculation of 
stability diagrams and simulated peaks for any 

repeating waveform. 

   No significant difference seen in the transmission/

peak width behaviour between the harmonic case and 
the more conventional digital waveforms. 

   M/W/U waveforms exhibit an increase in 
transmission at a given peak width. 

   Duty cycle based operation of a rectangular waveform 
mass filter gives slightly improved transmission vs 

conventional operation at d=0.5. 

   Temporal jitter of the digital pulse above 1e-3  T 

leads to transmission loss and peak distortion. 

Figure 7 shows transmission vs peak width for the harmonic, 

W-wave, M-wave and U-wave waveforms. All three waveforms 
give increased transmission at a given peak width compared to 

the harmonic case, the increase is smallest for the W-wave 
and largest for the U-wave. If we consider the 0.25 Da wide 

peak results ( = 0.9996), transmission is 29.0% for the 

harmonic, 30.5% for W, 33.7% for M and 39.5% for U. So for 

this peak width we see about 1/3rd more transmission for the 
U-wave compared to the harmonic. Note that the tip of the 

stability diagram is higher in q,a for these waveforms so larger 
pulse voltages are required. 

 
The rectangular waveform results presented so far all use a 

50/50 duty cycle (d=0.5).  In this mode we effectively apply 
resolving DC to obtain resolution. An alternative mode of 

operation is to adjust the duty cycle while keeping the pulse 

amplitudes identical, this gives a mass filter window when 
scanning along the a=0 line. As an example Figure 8 shows 

the first stable region for the rectangular waveform with 
d=0.6. Resolution is controlled by adjusting the duty cycle, 

with d=0.6121 corresponding to =1. 
We now consider results from simulated mass spectral peaks. 

As an example Figure 5 shows simulated peaks for the 
harmonic waveform at a range of  values. As the scan line 

moves closer to the tip of the stability region the transmission 
window narrows, increasing resolution at the cost of 

transmission. 
 

Figure 6 plots transmission vs peak width for the harmonic, 
rectangular, trapezoidal and triangular waveforms. The 

behavior of these waveforms is almost identical, at a given 
peak width we see a slight increase in transmission for the 

rectangular waveform and a slight decrease for the triangular.  
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Simulated mass spectral peaks are obtained by running an 

ensemble of ions at a range of q,a values to scan across the 
peak. For the results in this poster we use an ion of m/z 556, 

initial RF phase is random, initial x/y position is Gaussian with 
=0.01r0, initial x/y velocity is a thermal distribution T=1500K, 

130mm quadrupole rod length, 5mm r0, 1MHz RF frequency, 
0.5eV axial energy. SIMION was used for simulation of peaks 

with temporal jitter in the waveform. 
 

The resolution of the quadrupole is set by: 
 

 
 

 
 

  

Where  varies from 0-1, qtip and atip are the q,a values for the 

tip of the first stability region. Calculation of peaks for a range 

of  values enables plotting of transmission vs peak width 

(FWHM) curves, where transmission is the percentage of ions 

transmitted at the top of the peak. 
 

RESULTS 

Figure 2 shows the boundary of the first stability region  for 

the harmonic, rectangular, trapezoidal and triangular 
waveforms. The stability diagrams for these systems are 

related by scaling in the q-axis alone. As might be expected 
the harmonic lies between the rectangular and triangular 

waveforms. The chosen trapezoidal waveform is close to the 
harmonic, while a general trapezoidal waveform can fall 

anywhere between a rectangular and triangular waveform. The 
lack of scaling in the a-axis is expected, since the quadrupolar 

DC voltage applied in all these waveforms is identical for the 
same a. 

(1) 

(2) 

Figure 1. Plot of digital waveforms over one RF period T. a) 

Rectangular d=0.5, b) Trapezoidal, c) Triangular, d) M-wave, 
e) W-wave, f) U-wave. 

Figure 4. Plot of digital waveforms over one period for q=1, 

a=1. a) Rectangular d=0.5, b) M-wave. 

Figure 6. Transmission vs peak width for harmonic, rectangu-

lar, trapezoidal and triangular waveforms. 

Figure 7. Transmission vs peak width for harmonic, M-wave, 

W-wave and U-wave waveforms 
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Figure 8. First stability region for the rectangular waveform 

with d=0.6. 
 

Operation in this mode is attractive as it requires only one 
pulse voltage amplitude, simplifying the practical requirements 

of pulse generation. Figure 9 compares the transmission vs 
peak width for the rectangular waveform with d=0.5 operated 

in the conventional manner, and the rectangular waveform 
with a=0 and resolution set by varying d. We see in general 

that the a=0 mode of operation gives a slight increase in 
transmission at a given peak width. One caveat of this mode of 

operation is that if we wish to use a pre-filter we require two 
additional phase locked pulse voltages. 

Figure 9. Transmission vs peak width for the rectangular 

d=0.5 and variable d, a=0 modes of operation. 

Figure 10. Effect of jitter for the rectangular d=0.5 waveform 

for two resolution settings. a) =0.9995 b) =0.9985 

Figure 5. Simulated peaks for the harmonic waveform at a 

range of resolution settings. 

Figure 3. Boundaries of the first stability region for the har-

monic, M-wave, W-wave and U-wave waveforms. 

Figure 2. Boundaries of the first stability region for the har-

monic, rectangular (d=0.5), trapezoidal and triangular wave-
forms. 


